On 1-Arc-regular Graphs
Tài liệu tham khảo
Biggs, 1993
Babai, 1977, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hung., 29, 329, 10.1007/BF01895854
Conder, 1996, Remarks on path-transitivity on finite graphs, Europ. J. Combinatorics, 17, 371, 10.1006/eujc.1996.0030
Frucht, 1952, A one-regular graph of degree three, Can. J. Math., 4, 240, 10.4153/CJM-1952-022-9
Fang, 1999, Finite two-arc transitive graphs admitting a Suzuki simple group, Comm. Algebr., 27, 3727, 10.1080/00927879908826659
X. G. Fang, C. H. Li, J. Wang, M. Y. Xu, On cubic normal Cayley graphs of finite simple groups, Discrete Math. (to appear)
Yan-Quan, Feng, Jin, Ho, Kwak
Yan-Quan, Feng, Jin, Ho, Kwak, s, K, 3,3
Yan-Quan, Feng, Jin, Ho, Kwak, Ming- Yao, Xu, s
Godsil, 1981, On the full automorphism group of a graph, Combinatorica, 1, 243, 10.1007/BF02579330
Jones, 1994, Ree groups and Riemann surfaces, J. Algebr., 165, 41, 10.1006/jabr.1994.1097
Kleidman, 1988, The maximal subgroups of the Chevalley groups G2(q) with q odd, the Ree groups 2G2(q), and their automorphism groups, J. Algebr., 117, 30, 10.1016/0021-8693(88)90239-6
Miller, 1971, The trivalent symmetric graphs of girth at most six, J. Comb. Theory, B, 10, 163, 10.1016/0095-8956(71)90075-X
Praeger, 1985, Imprimitive symmetric graphs, Ars Combinatoria, 19A, 149
Praeger, 1993, On the O’Nan–Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc. (2), 47, 227, 10.1112/jlms/s2-47.2.227
Praeger, 1997, Finite quasiprimitive graphs, 65
Ree, 1961, A family of simple groups associated with the simple Lie algebra of type (G2), Am. J. Math., 83, 432, 10.2307/2372888
Sabidussi, 1964, Vertex-transitive graphs, Monatsh. Math., 68, 426, 10.1007/BF01304186
Tutte, 1947, A family of cubic graphs, Proc. Camb. Phil. Soc., 43, 459, 10.1017/S0305004100023720