Omega-Rational Expressions with Bounded Synchronization Delay

Volker Diekert1, Manfred Kufleitner1
1FMI, University of Stuttgart, Stuttgart, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arnold, A.: A syntactic congruence for rational ω-languages. Theor. Comput. Sci. 39, 333–335 (1985)

Diekert, V., Gastin, P.: Pure future local temporal logics are expressively complete for Mazurkiewicz traces. Inf. Comput. 204, 1597–1619 (2006). Conference version in LATIN 2004, LNCS 2976, pp. 170–182 (2004)

Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata: History and Perspectives. Texts in Logic and Games, pp. 261–306. Amsterdam University Press, Amsterdam (2008)

Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order logic over finite words. Int. J. Found. Comput. Sci. 19(3), 513–548 (2008). Special issue DLT 2007

Diekert, V., Kufleitner, M., Steinberg, B.: The Krohn-Rhodes theorem and local divisors. Fundam. Inform. 116(1–4), 65–77 (2012)

Golomb, S.W., Gordon, B.: Codes with bounded synchronization delay. Inf. Control 8(4), 355–372 (1965)

Kamp, J.A.W.: Tense logic and the theory of linear order. PhD thesis, University of California, Los Angeles (California) (1968)

McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971)

Meyberg, K.: Lectures on algebras and triple systems. Technical report, University of Virginia, Charlottesville (1972)

Perrin, D.: Recent results on automata and infinite words. In: Mathematical Foundations of Computer Science, Prague, 1984. Lecture Notes in Comput. Sci., vol. 176, pp. 134–148. Springer, Berlin (1984)

Perrin, D., Pin, J.-É.: Infinite Words. Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)

Pin, J.-É.: Varieties of Formal Languages. North Oxford Academic, London (1986)

Pin, J.-É., Straubing, H., Thérien, D.: Locally trivial categories and unambiguous concatenation. J. Pure Appl. Algebra 52(3), 297–311 (1988)

Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)

Schützenberger, M.P.: Sur certaines opérations de fermeture dans les langages rationnels. In: Symposia Mathematica, vol. XV. Convegno di Informatica Teorica, INDAM, Roma, 1973, pp. 245–253. Academic Press, London (1975)

Schützenberger, M.P.: Sur le produit de concaténation non ambigu. Semigroup Forum 13, 47–75 (1976)

Tesson, P., Thérien, D.: Diamonds are forever: the variety DA. In: Semigroups, Algorithms, Automata and Languages 2001, Proceedings, pp. 475–500. World Scientific, Singapore (2002)