Rác thải ô liu như một sản phẩm phụ có tiềm năng cao: Sự biến đổi của các hồ sơ phenolic, tính chất chống oxy hóa và độc tính thực vật

Waste and Biomass Valorization - Tập 12 - Trang 3657-3669 - 2020
Afef Ladhari1, Armando Zarrelli2, Mouldi Ghannem3, Mehdi Ben Mimoun1
1Laboratoire GREEN-TEAM (LR17AGR01), Institut National Agronomique de Tunisie (INAT), Université de Carthage, Tunis, Tunisia
2Department of Chemical Sciences, Complesso Universitario di Monte S. Angelo, University Federico II, Naples, Italy
3FERTISTAR- BP 42 Cité Chaker Borj Touil-Ariana, Tunis, Tunisia

Tóm tắt

Ngành công nghiệp dầu ô liu toàn cầu sản xuất một lượng lớn rác thải và nước thải. Tuy nhiên, việc xử lý những sản phẩm phụ ô nhiễm này là một vấn đề môi trường đáng kể do hàm lượng cao các hợp chất polyphenolic. Để khám phá các cách có thể khai thác rác thải này, chúng tôi đã nghiên cứu hồ sơ phytochemical, tính độc hại thực vật và hoạt động chống oxy hóa của rác ô liu (lá, nước thải xay nghiền ô liu (OMWW) và rác thải rắn từ xưởng xay (OMSW)). Chiết xuất từ lá thể hiện tác động độc hại thực vật và chống oxy hóa cao nhất, chủ yếu là do hàm lượng phenolic của nó. Hồ sơ sắc ký cho thấy mười một hợp chất phenolic thuộc về secoiridoids, phenyl alcohols, axit phenolic, glycoside phenylethanoid và flavonoid. Hydroxytyrosol và oleuropein là hai thành phần chính trong chiết xuất methanol từ lá và OMWW, với hàm lượng lần lượt là 13.05 và 4.39 mg/g DW. Những kết quả này sẽ giúp chứng minh khả năng sử dụng rác ô liu, đặc biệt là lá, như một sản phẩm tự nhiên giá rẻ trong các ứng dụng thực phẩm và nông nghiệp.

Từ khóa

#dầu ô liu #rác thải ô liu #hợp chất phenolic #hoạt động chống oxy hóa #độc tính thực vật

Tài liệu tham khảo

IOC.: The International Olive Council. November newsletter (2018). Bhatnagar, A., Kaczala, F., Hogland, W., Marques, M., Paraskeva, C.A., Papadakis, V.G., Sillanpää, M.: Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control. Environ. Sci. Pollut. Res. 21, 268–298 (2014) Guida, M.Y., Hannioui, A.: A review on thermochemical treatment of biomass: pyrolysis of olive mill wastes in comparison with other types of biomass. Progr. Agr. Eng. Sci. 12, 1–23 (2016) Herrero, M., Temirzoda, T.N., Segura-Carretero, A., Quirantes, R., Plaza, M., Ibañez, E.: New possibilities for the valorization of olive oil by-products. J. Chromatogr. A. 1218, 7511–7520 (2011) FAO. FAOSTAT Database. https://www.fao.org (2013). Meftah, O., Guergueb, Z., Braham, M., Sayadi, S., Mekki, A.: Long term effects of olive mill wastewaters application on soil properties and phenolic compounds migration under arid climate. Agric. Water Manag. 212, 119–125 (2019) Jarboui, R., Sellami, F., Kharroubi, A., Gharsallah, N., Ammar, E.: Olive mill wastewater stabilization in open-air ponds: impact on clay-sandy soil. Biores. Technol. 99, 7699–7708 (2008) El-Abbassi, A., Kiai, H., Hafidi, A.: Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 132, 406–412 (2012) Tsagaraki, E., Lazarides, H.N., Petrotos, K.B.: Olive mill wastewater treatment. In: Oreopoulou, V., Russ, W. (eds.) Olive mill wastewater treatment in utilization of by products and treatment of waste in the food industry, pp. 133–157. Springer, Boston (2007) Fiestas, R.U.J.A., Borja, P.R.: Use and treatment of olive mill wastewater: current situation and prospects in Spain. Grasas Aceites 43, 101–106 (1992) Enaime, G., Baçaoui, A., Yaacoubi, A., Belaqziz, M., Wichern, M., Lübken, M.: Phytotoxicity assessment of olive mill wastewater treated by different technologies: effect on seed germination of maize and tomato. Environ. Sci. Pollut. Res (2020). https://doi.org/10.1007/s11356-019-06672-z Kiritsakis, K., Goula, A.M., Adamopoulos, K.G., Gerasopoulos, D.: Valorization of olive leaves: spray drying of olive leaf extract. Waste Biomass Valori. 9, 619–633 (2018) Qasim, M., Fujii, Y., Ahmed, M.Z., Aziz, I., Watanabe, K.N., Khan, M.A.: Phytotoxic analysis of coastal medicinal plants and quantification of phenolic compounds using HPLC. Plant Biosys. 153, 767–774 (2019) Nunes, M.A., Páscoa, R.N.M.J., Alves, R.C., Costa, A.S.G., Bessada, S., Oliveira, M.B.P.P.: Fourier transform near infrared spectroscopy as a tool to discriminate olive wastes: the case of monocultivar pomaces. Waste Manag. 103, 378–387 (2020) Boz, Ö., Öǧüt, D., Doǧan, M.N.: The phytotoxicity potential of olive processing waste on selected weeds and crop plants. Phytoparasitica. 38, 291–298 (2010) Magdich, S., Rouina, B.B., Ammar, E.: Olive mill wastewater agronomic valorization by its spreading in olive grove. Waste Biomass Valori. 11, 1359–1372 (2020) Piotrowska, A., Iamarino, G., Rao, M.A., Gianfreda, L.: Short-term effects of olive mill wastewater (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biol. Biochem. 38, 600–610 (2006) Celano, G., Smejkalova, D., Spaccini, R., Piccolo, A.: Reduced toxicity of olive mill wastewaters by oxidative coupling with biomimetic catalysis. Environ. Sci. Technol. 42, 4896–4901 (2008) DellaGreca, M., Previtera, L., Temussi, F., Zarrelli, A.: Low-molecular-weight components of olive oil mill wastewaters. Phytochem. Anal. 15, 184–188 (2004) El-Abbassi, A., Saadaoui, N., Kiai, H., Raiti, J., Hafidi, A.: Potential applications of olive mill wastewater as biopesticide for crops protection. Sci. Total Environ. 576, 10–21 (2017) Taamalli, A., Arráez, R.D., Zarrouk, M., Segura-Carretero, A., Fernández, G.A.: Classification of “Chemlali” accessions according to the geographical area using chemometric methods of phenolic profiles analysed by HPLC-ESI-TOF-MS. Food Chem. 132, 561–566 (2012) Benavente-García, O., Castillo, J., Lorente, J., Ortuño, A., Del Río, J.A.: Antioxidant activity of phenolics extracted from Olea europea L. leaves. Food Chem. 68, 457–462 (2000) Nicolì, F., Negro, C., Vergine, M., Aprile, A., Nutricati, E., Sabella, E., Miceli, A., Luvisi, A., De Bellis, L.: Evaluation of phytochemical and antioxidant properties of 15 Italian Olea europaea L. cultivar leaves. Molecules 24, 1998 (2019) Vierhuis, E., Servili, M., Baldioli, M., Schols, H.A., Voragen, A.G.J., Montedoro, G.: Effect of enzyme treatment during mechanical extraction of olive oil on phenolic compounds and polysaccharides. J. Agric. Food Chem. 49, 1218–1223 (2001) Yakhlef, W., Arhab, R., Concepció, R., Brenes, M., de Castro, A., Medina, E.: Phenolic composition and antimicrobial activity of Algerian olive products and by-products. LWT-Food Sci. Technol. 93, 323–328 (2018) Moudache, M., Silva, F., Nerín, C., Zaidi, F.: Olive cake and leaf extracts as valuable sources of antioxidant and antimicrobial compounds: a comparative study. Waste Biomass Valori. (2020). https://doi.org/10.1007/s12649-020-01080-8 Pasten, A., Uribe, E., Stucken, K., Rodríguez, A., Vega-Galvez, A.: Influence of drying on the recoverable high-value products from Olive (cv. Arbequina) waste cake. Waste Biomass Valori. 10, 1627–1638 (2019) DellaGreca, M., Monaco, P., Pinto, G., Pollio, A., Previtera, L., Temussi, F.: Phytotoxicity of low-molecular-weight phenols from olive mill waste waters. Bull. Environ. Contam. Toxicol. 67, 352–359 (2001) Ladhari, A., Omezzine, F., DellaGreca, M., Zarrelli, A., Zuppolini, S., Haouala, R.: Phytotoxic activity of Cleome arabica L. and its principal discovered active compounds. South Afr. J. Bot. 88, 341–351 (2013) Wang, X., Sun, C., Gao, S., Wang, L., Shuokui, H.: Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44, 1711–1721 (2001) Galanakis, C.M., Tornberg, E., Gekasc, V.: Recovery and preservation of phenols from olive waste in ethanolic extracts. J. Chem. Technol. Biotechnol. 85, 1148–1155 (2010) Sultana, B., Anwar, F., Ashraf, M.: Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14, 2167–2180 (2009) Tan, M.C., Tan, C.P., Ho, C.W.: Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. Int. Food Res. J. 20, 3117–3123 (2013) Dai, J., Mumper, R.J.: Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010) Lafka, T.I., Lazou, A.E., Sinanoglou, V.J., Lazos, E.S.: Phenolic extracts from wild olive leaves and their potential as edible oils antioxidants. Foods 2, 18–31 (2013) Peschel, W., Sanchez-Rabaneda, F., Diekmann, W., Plescher, A., Gartzia, I., Jimenez, D., Lamuela-Raventos, R., Buxaderas, S., Condina, C.: An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 97, 137–150 (2006) Wong, P.Y.Y., Kitts, D.D.: Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem. 97, 505–515 (2006) Rusan, M.J.M., Albalasmeh, A.A., Zuraiqi, S., Bashabsheh, M.: Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.). Environ. Sci. Pollut. Res 22, 9127–9135 (2015) El-Darier, S.M., Abdel-Rahman, A.M., Saad, T.I.: Differential responses of Hordeum vulgare L. to allelochemicals of some Olea europaea L. cultivars. Catrina 17, 91–101 (2018) Muscolo, A., Sidari, M., Mallamaci, C., Attina, E.: Effects of olive mill wastewater on seed germination and seedling growth. Terr. Aquat. Environ. Toxicol. 4, 75–83 (2010) Ladhari, A., Gaaliche, B., Zarrelli, A., Ghannem, M., Ben Mimoun, M.: Allelopathic potential and phenolic allelochemicals discrepancies in Ficus carica L. cultivars. South Afr. J. Bot. 130, 30–44 (2020) Chiapusio, G., Sanchez, A.M., Reigosa, M.J., Gonzaiez, L., Pellissier, F.: Do germination indices adequately reflect allelochemical effects on the germination process? J. Chem. Ecol. 23, 2445–2453 (1997) Chung, I.M., Ahn, J.K., Yun, S.J.: Assessment of allelopathic potential of barnyardgrass (Echinochloa crus-galli) on rice (Oryza sativa L.) cultivars. Crop Prot. 20, 921–928 (2001) Liu, D.L., An, M., Wu, H.: Implementation of WESIA: whole-range evaluation of the strength of inhibition in allelopathic-bioassay. Allelopathy J. 19, 203–214 (2007) Gaaliche, B., Ladhari, A., Zarrelli, A., Ben Mimoun, M.: Impact of foliar potassium fertilization on biochemical composition and antioxidant activity of fig (Ficus carica L.). Sci. Hort. 253, 111–119 (2019) McDonald, S., Prenzler, P.D., Autolovich, M., Robards, K.: Phenolic content and antioxidant activity of olive extracts. Food Chem. 73, 73–84 (2001) Chang, C., Yang, M., Wen, H., Chern, J.: Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10, 178–182 (2002) Alam, S.M., Islam, E.: Effects of aqueous extract of leaf, stem and root of nettle leaf goosefoot and NaCl on germination and seedling growth of rice. Pak. J. Seed Technol. 1, 47–52 (2002) Podesta, E.E., Plaxton, W.C.: Regulation of cytosolic carbon metabolism in germinating Ricinus communis cotyledons. I. Developmental profiles for the activity, concentration, and molecular structure of the pyrophosphate and ATP-dependent phosphofructokinases, phosphoenolpyruvate carboxylase and pyruvate kinase. Planta 194, 374–380 (1994) Perveen, S., Mushtaq, M.N., Yousaf, M., Sarwar, N.: Allelopathic hormesis and potent allelochemicals from multipurpose tree Moringa oleifera leaf extract. Plant Biosys. (2020). https://doi.org/10.1080/11263504.2020.1727984 Bouknana, D., Jodeh, S., Sbaa, M., Hammouti, B., Arabi, M., Darmous, A., Slamini, M., Haboubi, K.: A phytotoxic impact of phenolic compounds in olive oil mill wastewater on fenugreek B Trigonella foenum-graecum. Environ. Monit. Assess. 191, 405 (2019) Vinson, J.A., Zubik, L., Bose, P., Samman, N., Proch, J.: Dried fruits: excellent in vitro and in vivo antioxidants. J. Am. Coll. Nutr. 1, 44–50 (2005) Einhellig, F.A.: Mechanism of action of allelochemicals in allelopathy. Agronomy J. 88, 886–888 (1996) Chandler, P.M., Zucar, J.A., Jacobson, J.V., Higgins, T.J.V., Inglis, A.S.: The effect of gibberellic acid and abscisic acid on α-amylase mRNA levels in barley aleurone layers studies using an α-amylase c DNA clone. Plant Mol. Biol. 3, 407–408 (1984) Özcan, M.M., Matthäus, B.: A review: benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 243, 89–99 (2017) Stankovic, M., Curcic, S., Zlatic, N., Bojovic, B.: Ecological variability of the phenolic compounds of Olea europaea L. leaves from natural habitats and cultivated conditions. Biotechnol. Biotechnol. Equip. 31, 499–504 (2017) Orak, H.H., Karamac, M., Amarowicz, R., Orak, A., Penkacik, K.: Genotype-Related differences in the phenolic compound profile and antioxidant activity of extracts from olive (Olea europaea L.) leaves. Molecules 24, 1130 (2019) Blasi, F., Urbani, E., Simonetti, M.S., Chiesi, C., Cossignani, L.: Seasonal variations in antioxidant compounds of Olea europaea leaves collected from different Italian cultivars. J. Appl. Bot. Food Qual. 89, 202–207 (2016) Servili, M., Baldioli, M., Selvaggini, R., Miniati, E., Macchioni, A., Montedoro, G.: High–performance liquid chromatography evaluation of phenols in olive fruit, virgin olive oil, vegetation waters and pomace and 1D- and 2D-Nuclear Magnetic Resonance characterization. J. Am. Oil Chem. Soc. 76, 873–882 (1999) Michel, T., Khlif, I., Kanakis, P., Termentzi, A., Allouche, N., Halabalaki, M., Skaltsounis, A.L.: UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. Phytochem. Lett. 11, 424–439 (2015) Capasso, R., Evidente, A., Visca, C.: Production of hydroxytyrosol from olive oil vegetation waters. Agrochimica. 38, 165–171 (1994) Liu, M.J., Li, J.X., Guo, H.Z., Lee, K.M., Qin, L., Chan, K.M.: The effects of verbascoside on plasma lipid peroxidation level and erythrocyte membrane fluidity during immobilization in rabbits: a time course study. Life Sci. 73, 883–892 (2003) Lama-Muñoz, A., del Mar Contreras, M., Espínola, F., Moya, M., Romero, I., Castro, E.: Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: extraction with the Soxhlet method and pressurized liquids. Food Chem. 320, 126626 (2020) Irakli, M., Chatzopoulou, P., Ekateriniadou, L.: Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crop. Prod. 124, 382–388 (2018) Şahin, S., Elhussein, E., Bilgin, M., Lorenzo, J.M., Barba, F.J., Roohinejad, S.: Effect of drying method on oleuropein, total phenolic content, flavonoid content, and antioxidant activity of olive (Olea europaea) leaf. J. Food Process Pres. 42, e13604 (2018) Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J.C., Lorquin, J., Delattre, M., Simon, J.L., Asther, M., Labat, M.: Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 75, 501–507 (2001) Koodkaew, I., Sunohara, Y., Matsuyama, S., Matsumoto, H.: Phytotoxic action mechanism of hapalocyclamide in lettuce seedlings. Plant Physiol. Biochem. 58, 23–28 (2012)