Oligosaccharides production from coprophilous fungi: An emerging functional food with potential health-promoting properties
Tài liệu tham khảo
Goldberg, 2012, Functional foods: designer foods, pharmafoods, nutraceuticals, Springer Sci. Bus. Media
Roberfroid, 2000, Prebiotics and probiotics: are they functional foods?, Am. J. Clin. Nutr., 71, 1682S, 10.1093/ajcn/71.6.1682S
Kandylis, P., Grapes and their derivatives in functional foods. 2021, Multidisciplinary Digital Publishing Institute.
Collazo, 2021, Health-promoting properties of bee royal jelly: food of the queens, Nutrients, 13, 543, 10.3390/nu13020543
Davani-Davari, 2019, Prebiotics: definition, types, sources, mechanisms, and clinical applications, Foods, 8, 92, 10.3390/foods8030092
Gibson, 2004, Dietary modulation of the human colonic microbiota: updating the concept of prebiotics, Nutr. Res. Rev., 17, 259, 10.1079/NRR200479
Younis, 2015, Health benefits and application of prebiotics in foods, J. Food Process. Technol., 6, 1
Zhang, 2017, Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611, J. Biotechnol., 249, 25, 10.1016/j.jbiotec.2017.03.021
Ahmad, 2021, Prebiotics and iron bioavailability? Unveiling the hidden association-a review, Trends Food. Sci. Technol., 10.1016/j.tifs.2021.01.085
Barreteau, 2006, Production of oligosaccharides as promising new food additive generation, Food Technol. Biotechnol., 44
Al Ali, 2021, Nutraceuticals: transformation of conventional foods into health promoters/disease preventers and safety considerations, Molecules, 26, 2540, 10.3390/molecules26092540
Kalra, 2003, Nutraceutical-definition and introduction, Aaps Pharm., 5, 27, 10.1208/ps050325
Pandey, 2010, Nutraceuticals: a new era of medicine and health, Asian J. Pharm. Clin. Res., 3, 11
Pearson, 2018, Nutraceuticals and skin health: key benefits and protective properties, J. Aesthet. Nurs., 7, 35, 10.12968/joan.2018.7.Sup1.35
Al-Sheraji, 2013, Prebiotics as functional foods: a review, J. Funct. Foods, 5, 1542, 10.1016/j.jff.2013.08.009
Belorkar, 2016, Oligosaccharides: a boon from nature's desk, AMB Express, 6, 1, 10.1186/s13568-016-0253-5
Michel, 2016, Fructosyltransferase sources, production, and applications for prebiotics production, in probiotics and prebiotics in human nutrition and health, IntechOpen, 169
Ojwach, 2020, Fructosyltransferase and inulinase production by indigenous coprophilous fungi for the biocatalytic conversion of sucrose and inulin into oligosaccharides, Biocatal. Agric. Biotechnol., 30, 10.1016/j.bcab.2020.101867
Yan, 2018, Prebiotics, FODMAPs and dietary fiber-conflicting concepts in the development of functional food products?, Curr. Opin Food Sci., 20, 30, 10.1016/j.cofs.2018.02.009
Hernández, 2018, Fructooligosaccharides production by Schedonorus arundinaceus sucrose: sucrose 1-fructosyltransferase constitutively expressed to high levels in Pichia pastoris, J. Biotechnol., 266, 59, 10.1016/j.jbiotec.2017.12.008
Mutanda, 2014, Microbial enzymatic production and applications of short-chain fructooligosaccharides and inulooligosaccharides: recent advances and current perspectives, J. Ind. Microbiol. Biotechnol., 41, 893, 10.1007/s10295-014-1452-1
Ganaie, 2014, Recycling of cell culture and efficient release of intracellular fructosyltransferase by ultrasonication for the production of fructooligosaccharides, Carbohydr. Polym., 110, 253, 10.1016/j.carbpol.2014.03.066
Bali, 2015, Fructo-oligosaccharides: production, purification and potential applications, Crit. Rev. Food Sci. Nutr., 55, 1475, 10.1080/10408398.2012.694084
Roberfroid, 1998, Dietary fructans, Annu. Rev. Nutr., 18, 117, 10.1146/annurev.nutr.18.1.117
Scholz-Ahrens, 2002, Inulin, oligofructose and mineral metabolism—experimental data and mechanism, Br. J. Nutr., 87, S179, 10.1079/BJN/2002535
Scholz-Ahrens, 2002, Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats, Br. J. Nutr., 88, 365, 10.1079/BJN2002661
Prapulla, S., V. Subhaprada, and N. Karanth, Microbial production of oligosaccharides: a review. 2000.
Antosova, 2002, Fructosyltransferases: the enzymes catalyzing the production of fructooligosaccharides, Chem. Pap.-Slovak Acad. Sci., 55, 350
Teferra, 2021, Possible actions of inulin as prebiotic polysaccharide: a review, Food Front.
Ziemer, 1998, An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies, Int. Dairy J., 8, 473, 10.1016/S0958-6946(98)00071-5
Sangeetha, 2005, Recent trends in the microbial production, analysis and application of fructooligosaccharides, Trends Food Sci. Technol., 16, 442, 10.1016/j.tifs.2005.05.003
Goulas, 2007, Development of a process for the production and purification of α-and β-galactooligosaccharides from Bifidobacterium bifidum NCIMB 41171, Int. Dairy J., 17, 648, 10.1016/j.idairyj.2006.08.010
Lecerf, 2012, Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties, Br. Jo. Nutr., 108, 1847, 10.1017/S0007114511007252
Fan, 2021, Process Design for the production of prebiotic oligosaccharides in an enzyme membrane bioreactor: interaction between enzymatic reaction and membrane filtration, Chem. Ing. Tech., 93, 306, 10.1002/cite.202000127
Ojwach, J., et al., Purification and biochemical characterization of an extracellular fructosyltransferase enzyme from Aspergillus niger sp. XOBP48: implication in fructooligosaccharide production. 3 Biotech, 2020. 10(10): p. 1–12.
Wang, 2021, Continuous production of fructooligosaccharides by recycling of the thermal-stable β-fructofuranosidase produced by Aspergillus niger, Biotechnol. Lett., 43, 1175, 10.1007/s10529-021-03099-w
Zhao, 2021, Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory, Carbohydr. Polym.
Farouq, 2012, Isolation and characterization of Coprophilous cellulolytic fungi from Asian elephant (Elephas maximus) dung, J. Biol. Agr. Healthc., 2, 44
Eliasson, 2013, Coprophilous myxomycetes: recent advances and future research directions, Fungal Divers., 59, 85, 10.1007/s13225-012-0185-6
Sarrocco, 2016, Dung-inhabiting fungi: a potential reservoir of novel secondary metabolites for the control of plant pathogens, Pest Manag. Sci., 72, 643, 10.1002/ps.4206
Baker, 2013, Do dung fungal spores make a good proxy for past distribution of large herbivores?, Quat. Sci. Rev., 62, 21, 10.1016/j.quascirev.2012.11.018
Richardson, 2001, Diversity and occurrence of coprophilous fungi, Mycol. Res., 105, 387, 10.1017/S0953756201003884
López-Sáez, 2007, Coprophilous fungi as a source of information of anthropic activities during the prehistory in the Amblés Valley (Ávila, Spain): the archaeopalynological record, Rev. Española Micropaleontología, 39, 103
Johnson, 2015, Using dung fungi to interpret decline and extinction of megaherbivores: problems and solutions, Quat. Sci. Rev., 110, 107, 10.1016/j.quascirev.2014.12.011
Calaça, 2016, New records of coprophilous ascomycetes (Fungi: ascomycota) from Brazil and Neotropical Region, Check List, 12, 1, 10.15560/12.6.2009
Melo, 2020, Coprophilous fungi from Brazil: updated identification keys to all recorded species, Phytotaxa, 436, 104, 10.11646/phytotaxa.436.2.2
Richardson, 2002, The coprophilous succession, Fungal Divers., 10, 1
Peterson, 2009, Fungi from koala (Phascolarctos cinereus) faeces exhibit a broad range of enzyme activities against recalcitrant substrates, Lett. Appl. Microbiol., 48, 218, 10.1111/j.1472-765X.2008.02513.x
Selinger, 1996, The rumen: a unique source of enzymes for enhancing livestock production, Anaerobe, 2, 263, 10.1006/anae.1996.0036
Ojwach, 2020, Fructooligosaccharides synthesized by fructosyltransferase from an indigenous coprophilous Aspergillus niger strain XOBP48 exhibits antioxidant activity, Bioact. Carbohydr. Diet. Fibre, 24
Shinde, 2021, Maltooligosaccharide forming amylases and their applications in food and pharma industry, J. Food Sci. Technol., 1
Kothari, 2014, Therapeutic spectrum of nondigestible oligosaccharides: an overview of current state and prospect, J. Food Sci., 79, R1491, 10.1111/1750-3841.12536
Sangeetha, P., Microbial production of fructooligosaccharides. 2003, University of Mysore.
Apolinar-Valiente, 2021, Recent advances in the knowledge of wine oligosaccharides, Food Chem., 342, 10.1016/j.foodchem.2020.128330
Voragen, 1998, Technological aspects of functional food-related carbohydrates, Trends Food Sci. Technol., 9, 328, 10.1016/S0924-2244(98)00059-4
Mussatto, 2007, Non-digestible oligosaccharides: a review, Carbohydr. Polym., 68, 587, 10.1016/j.carbpol.2006.12.011
Alméciga-Díaz, 2011, Computational analysis of the fructosyltransferase enzymes in plants, fungi and bacteria, Gene, 484, 26, 10.1016/j.gene.2011.05.024
Patel, 2011, Functional oligosaccharides: production, properties and applications, World J. Microbiol. Biotechnol., 27, 1119, 10.1007/s11274-010-0558-5
Roberfroid, 2000, Nondigestible oligosaccharides, Crit. Rev. Food Sci. Nutr, 40, 461, 10.1080/10408690091189239
Kwak, 2001, Functional foods. Part 1: the development of a regulatory concept, Food Control, 12, 99, 10.1016/S0956-7135(00)00028-1
Roberfroid, 2007, Prebiotics: the concept revisited, J. Nutr., 137, 10.1093/jn/137.3.830S
Raman, 2005, Glycomics: an integrated systems approach to structure-function relationships of glycans, Nat. Methods, 2, 817, 10.1038/nmeth807
Bersaneti, 2018, Co-production of fructooligosaccharides and levan by levansucrase from Bacillus subtilis natto with potential application in the food industry, Appl. Biochem. Biotechnol., 184, 838, 10.1007/s12010-017-2587-0
Yoshida, 2021, Fructan structure and metabolism in overwintering plants, Plants, 10, 933, 10.3390/plants10050933
Manosroi, 2014, Biological activities of fructooligosaccharide (FOS)-containing Coix lachryma-jobi Linn. extract, J. Food Sci. Technol., 51, 341, 10.1007/s13197-011-0498-6
Meyer, T.S.M., et al., Biotechnological production of oligosaccharides-applications in the food industry. food production and industry. InTech, 2015: p. 25–78.
Benkeblia, 2013, Fructooligosaccharides and fructans analysis in plants and food crops, J. Chromatogr. A, 1313, 54, 10.1016/j.chroma.2013.08.013
Kango, 2011, Production and properties of microbial inulinases: recent advances, Food Biotechnol., 25, 165, 10.1080/08905436.2011.590763
Fernandes, 2013, Research article fungal inulinases as potential enzymes for application in the food industry, Adv. J. Food Sci. Technol., 5, 1031, 10.19026/ajfst.5.3201
Rawat, 2017, Biotechnological potential of microbial inulinases: recent perspective, Crit. Rev. Food Sci. Nutr., 57, 3818, 10.1080/10408398.2016.1147419
Flamm, 2001, Inulin and oligofructose as dietary fiber: a review of the evidence, Crit. Rev. Food Sci. Nutr., 41, 353, 10.1080/20014091091841
Singh, 2020, Enzymatic synthesis of fructooligosaccharides from inulin in a batch system, Carbohydr. Polym. Technol. Appl., 1
Pérez, 2021, Fructooligosaccharides production by immobilized Pichia pastoris cells expressing Schedonorus arundinaceus sucrose: sucrose 1-fructosyltransferase, J. Ind. Microbiol. Biotechnol., 10.1093/jimb/kuab036
Lorenzoni, 2014, Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus, Carbohydr. Polym., 103, 193, 10.1016/j.carbpol.2013.12.038
Nemukula, 2009, Response surface methodology: synthesis of short-chain fructooligosaccharides with a fructosyltransferase from Aspergillus aculeatus, Bioresour. Technol., 100, 2040, 10.1016/j.biortech.2008.10.022
Russell, 1983, Fructosyltransferase activity of a glucan-binding protein from Streptococcus mutans, Microbiology, 129, 3243, 10.1099/00221287-129-10-3243
Burne, 1987, Expression, purification, and characterization of an exo-beta-d-fructosidase of Streptococcus mutans, J. Bacteriol., 169, 4507, 10.1128/jb.169.10.4507-4517.1987
Shiroza, 1988, Sequence analysis of the Streptococcus mutans fructosyltransferase gene and flanking regions, J. Bacteriol., 170, 810, 10.1128/jb.170.2.810-816.1988
Cheetham, 1989, Synthesis of novel disaccharides by a newly isolated fructosyl transferase from Bacillus subtilis, Enzyme Microb. Technol., 11, 212, 10.1016/0141-0229(89)90095-1
Park, 2001, Purification and characterization of a novel transfructosylating enzyme from Bacillus macerans EG-6, Process Biochem., 37, 471, 10.1016/S0032-9592(01)00237-0
Ooi, M.C., The preparation of common prebiotic oligosaccharides with defined degree of polymerization. 2021.
L'Hocine, 2000, Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023, J. Biotechnol., 81, 73, 10.1016/S0168-1656(00)00277-7
Saminathan, 2011, Effect of prebiotic oligosaccharides on the growth of Lactobacillus strains used as a probiotic for chickens, Afr. J. Microbiol. Res., 5, 57
Dominguez, 2014, An overview of the recent developments on fructooligosaccharide production and applications, Food Bioproc. Tech., 7, 324, 10.1007/s11947-013-1221-6
Ganaie, 2014, Enzymatic trends of fructooligosaccharides production by microorganisms, Appl. Biochem. Biotechnol., 172, 2143, 10.1007/s12010-013-0661-9
Brownawell, 2012, Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals, J. Nutr., 142, 962, 10.3945/jn.112.158147
Ganaie, 2013, Screening of biocatalysts for the transformation of sucrose to fructooligosaccharides, J. Mol. Catal. B: Enzym., 97, 12, 10.1016/j.molcatb.2013.07.008
Sabater-Molina, 2009, Dietary fructooligosaccharides and potential benefits on health, J. Physiol. Biochem., 65, 315, 10.1007/BF03180584
Wang, 2015, Synthesis of neo-fructooligosaccharides, Organic Chem. Insights, 5, 1, 10.4137/OCI.S13222
Barclay, 2016, Inulin-a versatile polysaccharide with multiple pharmaceutical and food chemical uses, J. Excip. Food Chem., 1, 1132
Ponce, 2008, Physical-chemical and non-linear rheological properties of aqueous solutions of agave fructans, e-Gnosis, 6, 1
Niness, 1999, Inulin and oligofructose: what are they?, J. Nutr., 129, 1402S, 10.1093/jn/129.7.1402S
Beikzadeh, M., et al., Effect of inulin, oligofructose and oligofructose-enriched inulin on physicochemical, staling, and sensory properties of prebiotic cake. 2018.
Cherbut, 2002, Inulin and oligofructose in the dietary fibre concept, Br. J. Nutr., 87, S159, 10.1079/BJN2002532
Liang, 2021, Fermentative production of fructo-oligosaccharides using Aureobasidium pullulans: effect of dissolved oxygen concentration and fermentation mode, Molecules, 26, 3867, 10.3390/molecules26133867
Viniegra-González, 2003, Advantages of fungal enzyme production in solid-state over liquid fermentation systems, Biochem. Eng. J., 13, 157, 10.1016/S1369-703X(02)00128-6
Das, 2007, Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid-state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants, Process Biochem., 42, 1191, 10.1016/j.procbio.2007.05.011
Mussatto, 2015, Economic analysis and environmental impact assessment of three different fermentation processes for fructooligosaccharides production, Bioresour. Technol., 198, 673, 10.1016/j.biortech.2015.09.060
Couto, 2006, Application of solid-state fermentation to food industry—a review, J. Food Eng., 76, 291, 10.1016/j.jfoodeng.2005.05.022
Mussatto, 2013, Maximization of fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus under solid-state fermentation conditions, Food Bioproc. Tech., 6, 2128, 10.1007/s11947-012-0873-y
Muñiz-Márquez, 2016, Enhancement of fructosyltransferase and fructooligosaccharides production by A. oryzae DIA-MF in Solid-State Fermentation using aguamiel as culture medium, Bioresour. Technol., 213, 276, 10.1016/j.biortech.2016.03.022
Rustiguel, 2011, Biochemical properties of an extracellular β-d-fructofuranosidase II produced by Aspergillus phoenicis under solid-sate fermentation using soy bran as substrate, Electron. J. Biotechnol., 14
Mussatto, 2009, Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials, J. Mol. Catal. B: Enzym., 59, 76, 10.1016/j.molcatb.2009.01.005
Mazutti, 2007, Production of inulinase by solid-state fermentation: effect of process parameters on production and preliminary characterization of enzyme preparations, Bioprocess Biosyst. Eng., 30, 297, 10.1007/s00449-006-0096-6
Ashokkumar, 2001, Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid-state fermentation, Process Biochem., 37, 331, 10.1016/S0032-9592(01)00204-7
Singh, 2018, Biocatalytic strategies for the production of high fructose syrup from inulin, Bioresour. Technol., 260, 395, 10.1016/j.biortech.2018.03.127
Li, 2021, A Novel Inulin-mediated ethanol precipitation method for separating endo-inulinase from inulinases for inulooligosaccharides production from inulin, Front. Bioeng. Biotechnol., 9
Singh, 2016, Recent insights in enzymatic synthesis of fructooligosaccharides from inulin, Int. J. Biol. Macromol., 85, 565, 10.1016/j.ijbiomac.2016.01.026
Roberfroid, 2005, Introducing inulin-type fructans, Br. J. Nutr., 93, S13, 10.1079/BJN20041350
Roberfroid, M., Inulin-type fructans: functional food ingredients. 2004: CRC Press.
Singh, 2021, Fructooligosaccharides Production from Inulin by Immobilized Endoinulinase on 3-Aminopropyltriethoxysilane Functionalized Halloysite Nanoclay, Catal. Letters, 1
He, 2014, Enhanced expression of endoinulinase from Aspergillus niger by codon optimization in Pichia pastoris and its application in inulooligosaccharide production, J. Ind. Microbiol. Biotechnol., 41, 105, 10.1007/s10295-013-1341-z
Rawat, H.K., M.A. Ganaie, and N. Kango, Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in the generation of fructose and fructo-oligosaccharides. Antonie Van Leeuwenhoek , 2015. 107(3): p. 799–811.
Li, 2021, Assessing the effects of inulin-type fructan intake on body weight, blood glucose, and lipid profile: a systematic review and meta-analysis of randomized controlled trials, Food Sci. Nutr., 9, 4598, 10.1002/fsn3.2403
Chi, 2009, Inulinase-expressing microorganisms and applications of inulinases, Appl. Microbiol. Biotechnol., 82, 211, 10.1007/s00253-008-1827-1
Singh, 2017, A panorama of bacterial inulinases: production, purification, characterization and industrial applications, Int. J. Biol. Macromol., 96, 312, 10.1016/j.ijbiomac.2016.12.004
Trollope, 2015
Apolinário, 2014, Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology, Carbohydr. Polym., 101, 368, 10.1016/j.carbpol.2013.09.081
Khuenpet, 2017, Inulin powder production from Jerusalem artichoke (Helianthus tuberosus L.) tuber powder and its application to commercial food products, J. Food Process. Preserv., 41, e13097, 10.1111/jfpp.13097
Tomotani, 2007, Production of high-fructose syrup using immobilized invertase in a membrane reactor, J. Food Eng., 80, 662, 10.1016/j.jfoodeng.2006.07.002
Cho, 2001, Production of inulooligosaccharides from inulin by a dual endoinulinase system, Enzyme Microb. Technol., 29, 428
Kim, 2006, Inulooligosaccharide production from inulin by Saccharomyces cerevisiae strain displaying cell-surface endoinulinase, J. Microbiol. Biotechnol., 16, 360, 10.4014/jmb.1109.09052
Schmid, 2001, Industrial biocatalysis today and tomorrow, Nature, 409, 258, 10.1038/35051736
de Oliveira Kuhn, 2013, Synthesis of fructooligosaccharides from Aspergillus niger commercial inulinase immobilized in montmorillonite pretreated in pressurized propane and LPG, Appl. Biochem. Biotechnol., 169, 750, 10.1007/s12010-012-0007-z
Dantas, 2021, Purification of chitosanases produced by Bacillus toyonensis CCT 7899 and functional oligosaccharides production, Prep. Biochem. Biotechnol., 1
Mathur, A. and D. Sadana, Inulinase: microbial origin to food applications. 2021.
Yazici, 2021, Response surface methodology-based optimization of inulinase production from new Bacillus isolates, Sakarya Univ. J. Sci., 25, 1086, 10.16984/saufenbilder.897660
Guío, 2009, Recent trends in fructooligosaccharides production, Recent Pat. Food Nutr. Agric, 1, 221, 10.2174/2212798410901030221
Corrado, 2021, Optimization of inulin hydrolysis by Penicillium lanosocoeruleum inulinases and efficient conversion into polyhydroxyalkanoates, Front. Bioeng. Biotechnol., 9, 108, 10.3389/fbioe.2021.616908
Cho, 2002, Purification and characterization of an endoinulinase from Xanthomonas oryzae No. 5, Process Biochem., 37, 1325, 10.1016/S0032-9592(02)00018-3
Singh, 2021, Production of fungal endoinulinase in a stirred tank reactor and fructooligosaccharides preparation by crude endoinulinase, Bioresour. Technol. Rep., 15
Maiorano, 2008, Microbial production of fructosyltransferases for synthesis of pre-biotics, Biotechnol. Lett., 30, 1867, 10.1007/s10529-008-9793-3
Lateef, 2012, Production of fructosyltransferase by a local isolate of Aspergillus niger in both submerged and solid substrate media, Acta Aliment., 41, 100, 10.1556/AAlim.41.2012.1.12
Yoshikawa, 2006, Multiple β-fructofuranosidases by Aureobasidium pullulans DSM2404 and their roles in fructooligosaccharide production, FEMS Microbiol. Lett., 265, 159, 10.1111/j.1574-6968.2006.00488.x
Chi, 2009, Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast, Appl. Microbiol. Biotechnol., 82, 793, 10.1007/s00253-009-1882-2
Kurakake, 2010, Production of fructooligosaccharides by β-fructofuranosidases from Aspergillus oryzae KB, J. Agric. Food Chem., 58, 488, 10.1021/jf903303w
Mashita, 2014, Production of fructosyltransferase by Penicillium simplicissimum in batch culture, Afr. J. Biotechnol., 13
Xu, 2015, Purification and biochemical characterization of a novel β-fructofuranosidase from Penicillium oxalicum with transfructosylating activity producing neokestose, Process Biochem., 50, 1237, 10.1016/j.procbio.2015.04.020
Ademakinwa, 2017, Strain improvement and statistical optimization as a combined strategy for improving fructosyltransferase production by Aureobasidium pullulans NAC8, J. Genetic Eng. Biotechnol., 15, 345, 10.1016/j.jgeb.2017.06.012
Jayalakshmi, 2021, Microbial enzymatic production of fructooligosaccharides from sucrose in agricultural harvest, Asian J. Microbiol. Biotechnol. Environ. Sci, 23, 84
Michel, 2021, Fructosyltransferase production by Aspergillus oryzae BM-DIA using solid-state fermentation and the properties of its nucleotide and protein sequences, Folia Microbiol. (Praha), 66, 469, 10.1007/s12223-021-00862-4
Van Balken, 1991, Production of 1-kestose with intact mycelium of Aspergillus phoenicis containing sucrose-1 F-fructosyltransferase, Appl. Microbiol. Biotechnol., 35, 216, 10.1007/BF00184689
Barthomeuf, 1995, Production of high-content fructo-oligosaccharides by an enzymatic system from Penicillium rugulosum, Biotechnol. Lett., 17, 911, 10.1007/BF00127425
Belorkar, 2015, Screening of microbial isolates for extracellular fructosyltransferase production, Afr. J. Microbiol. Res., 9, 730, 10.5897/AJMR2014.7346
Chen, 1996, Production of β-fructofuranosidase by Aspergillus japonicus, Enzyme Microb. Technol., 18, 153, 10.1016/0141-0229(95)00099-2
Madlov, 2000, Screening of microorganisms for transfructosylating activity and optimization of biotransformation of sucrose to fructooligosaccharides, Chem. Pap.-Slovak Acad. Sci., 53, 366
Fernandez, 2007, Screening of β-fructofuranosidase-producing microorganisms and effect of pH and temperature on enzymatic rate, Appl. Microbiol. Biotechnol., 75, 87, 10.1007/s00253-006-0803-x
Dominguez, 2006, New and simple plate test for screening relative transfructosylation activity of fungi, Rev. Iberoam. Micol., 23, 189, 10.1016/S1130-1406(06)70042-0
Guimarães, 2006, Screening of filamentous fungi for production of enzymes of biotechnological interest, Braz. J. Microbiol., 37, 474, 10.1590/S1517-83822006000400014
Maugeri, 2007, Screening of yeast strains for transfructosylating activity, J. Mol. Catal. B: Enzym., 49, 43, 10.1016/j.molcatb.2007.08.001
Lama, A., Screening of fungi with potential for producing fructooligosaccharides with enhanced bioactivity. 2017.
Hicke, 1999, Novel enzyme-membrane reactor for polysaccharide synthesis, J. Memb. Sci., 161, 239, 10.1016/S0376-7388(99)00116-7
Van Hijum, 2004, Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri, Microbiology, 150, 621, 10.1099/mic.0.26671-0
Song, 1999, Mutation of aspartic acid residues in the fructosyltransferase of Streptococcus salivarius ATCC 25975, Biochem. J., 344, 259, 10.1042/bj3440259
Song, 1999, Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975, Biochem. J., 341, 285, 10.1042/bj3410285
Dahech, 2012, Partial purification of a Bacillus licheniformis levansucrase producing levan with antitumor activity, Int. J. Biol. Macromol., 51, 329, 10.1016/j.ijbiomac.2012.04.030
Porras-Domínguez, 2014, Levan-type FOS production using a Bacillus licheniformis endolevanase, Process Biochem., 49, 783, 10.1016/j.procbio.2014.02.005
Bekers, 2002, Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase, Process Biochem., 38, 701, 10.1016/S0032-9592(02)00189-9
Sheu, 2001, Production of fructooligosaccharides in high yield using a mixed enzyme system of β-fructofuranosidase and glucose oxidase, Biotechnol. Lett., 23, 1499, 10.1023/A:1011689531625
van Hijum, 2001, Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced, FEMS Microbiol. Lett., 205, 323, 10.1016/S0378-1097(01)00490-6
van Hijum, S.A.F.T., Fructosyltransferases of Lactobacillus reuteri: characterization of genes, enzymes, and fructan polymers. 2004.
Naidoo, 2015, Purification and Characterization of an Endoinulinase from Xanthomonas campestris pv. phaseoli KM 24 Mutant, Food Technol. Biotechnol., 53, 146
Pandey, 1999, Recent developments in microbial inulinases, Appl. Biochem. Biotechnol., 81, 35, 10.1385/ABAB:81:1:35
Gao, 2007, Single-cell protein production from Jerusalem artichoke extract by a recently isolated marine yeast Cryptococcus aureus G7a and its nutritive analysis, Appl. Microbiol. Biotechnol., 77, 825, 10.1007/s00253-007-1210-7
Jing, 2003, Production and separation of exo-and endoinulinase from Aspergillus ficuum, Process Biochem., 39, 5, 10.1016/S0032-9592(02)00264-9
Sharma, 2021, Barley-based probiotic food mixture: health effects and future prospects, Crit. Rev. Food Sci. Nutr., 1, 10.1080/10408398.2021.2007844
Kaprasob, 2018, B vitamins and prebiotic fructooligosaccharides of cashew apple fermented with probiotic strains Lactobacillus spp., Leuconostoc mesenteroides and Bifidobacterium longum, Process Biochem., 70, 9, 10.1016/j.procbio.2018.04.009
Cummings, 2002, Gastrointestinal effects of prebiotics, Br. J. Nutr., 87, S145, 10.1079/BJN/2002530
Durieux, 2001, Metabolism of chicory fructooligosaccharides by bifidobacteria, Biotechnol. Lett., 23, 1523, 10.1023/A:1011645608848
Barber, 2020, The health benefits of dietary fibre, Nutrients, 12, 3209, 10.3390/nu12103209
Schley, 2002, The immune-enhancing effects of dietary fibres and prebiotics, Br. J. Nutr., 87, S221, 10.1079/BJN/2002541
Candela, 2011, Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer, Crit. Rev. Microbiol., 37, 1, 10.3109/1040841X.2010.501760
Azcárate-Peril, 2011, The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer?, Am. J. Physiol.-Gastrointest. Liver Physiol., 301, G401, 10.1152/ajpgi.00110.2011
Van Loo, 2004, The specificity of the interaction with intestinal bacterial fermentation by prebiotics determines their physiological efficacy, Nutr. Res. Rev., 17, 89, 10.1079/NRR200377
Scharlau, 2009, Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre, Mut. Res./Rev. Mut. Res., 682, 39, 10.1016/j.mrrev.2009.04.001
Sharma, 2021, Probiotics and prebiotics having broad spectrum anticancer therapeutic potential: recent trends and future perspectives, Curr. Pharmacol. Rep., 1
Thum, 2017, Effects of prenatal consumption of caprine milk oligosaccharides on mice mono-associated with Bifidobacterium Bifidum (AGR2166), Open Microbiol. J., 11, 105, 10.2174/1874285801711010105
Yamamoto, 2021, Effect of high fat and fructo-oligosaccharide consumption on immunoglobulin A in saliva and salivary glands in rats, Nutrients, 13, 1252, 10.3390/nu13041252
Scholz-Ahrens, 2007, Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure, J. Nutr., 137, 838S, 10.1093/jn/137.3.838S
Bornet, 2002, Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications, Digest. Liver Dis., 34, S111, 10.1016/S1590-8658(02)80177-3
de Cássia Freitas, 2012, High-performance inulin and oligofructose prebiotics increase the intestinal absorption of iron in rats with iron deficiency anaemia during the growth phase, Br. J. Nutr., 108, 1008, 10.1017/S0007114511006301
Kok, 1996, Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats, Br. J. Nutr., 76, 881, 10.1079/BJN19960094
Yamamoto, 1999, In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats, J. Nutr. Biochem., 10, 13, 10.1016/S0955-2863(98)00077-1
Nie, 2021, Dietary fiber: an opportunity for a global control of hyperlipidemia, Oxid. Med. Cell. Longev., 10.1155/2021/5542342
Saad, 2013, An overview of the last advances in probiotic and prebiotic field, LWT-Food Sci. Technol., 50, 1, 10.1016/j.lwt.2012.05.014
Imaizumi, 1991, Effects of xylooligosaccharides on blood glucose, serum and liver lipids and cecum short-chain fatty acids in diabetic rats, Agric. Biol. Chem., 55, 199
Guo, 2003, Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay, Nutr. Res., 23, 1719, 10.1016/j.nutres.2003.08.005
Aslani, 2016, Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system, Life Sci., 146, 163, 10.1016/j.lfs.2016.01.014
Galano, 2018, Melatonin: a versatile protector against oxidative DNA damage, Molecules, 23, 530, 10.3390/molecules23030530
Fang, 2002, Free radicals, antioxidants, and nutrition, Nutrition, 18, 872, 10.1016/S0899-9007(02)00916-4
Battin, 2009, Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms, Cell Biochem. Biophys., 55, 1, 10.1007/s12013-009-9054-7
Czarnocka, 2018, Friend or foe? Reactive oxygen species production, scavenging and signalling in plant response to environmental stresses, Free Radic. Biol. Med., 122, 4, 10.1016/j.freeradbiomed.2018.01.011
Ames, 1993, Oxidants, antioxidants, and the degenerative diseases of ageing, Proc. Natl. Acad. Sci., 90, 7915, 10.1073/pnas.90.17.7915
Kang, 2020, Cardiovascular manifestations and treatment considerations in covid-19, Heart, 106, 1132, 10.1136/heartjnl-2020-317056
Salonen, 1992, High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men, Circulation, 86, 803, 10.1161/01.CIR.86.3.803
Pryor, W.A., Free radicals and lipid peroxidation: what they are and how they got that way. Natural Antioxidants in Human Health and Disease, 1994: p. 1–24.
Weitzman, S.A. and L.I. Gordon, Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. 1990.
Taylor, 1992, Role of nutrients in delaying cataracts a, Ann. N. Y. Acad. Sci., 669, 111, 10.1111/j.1749-6632.1992.tb17093.x
Robertson, 1989, Vitamin E intake and risk of cataracts in humans a, Ann. N. Y. Acad. Sci., 570, 372, 10.1111/j.1749-6632.1989.tb14936.x
Jacques, 1991, Epidemiologic evidence of a role for the antioxidant vitamins and carotenoids in cataract prevention, Am. J. Clin. Nutr., 53, 352S, 10.1093/ajcn/53.1.352S
Leske, 1991, The lens opacities case-control study: risk factors for cataract, Arch. Ophthalmol., 109, 244, 10.1001/archopht.1991.01080020090051
Hankinson, 1992, Nutrient intake and cataract extraction in women: a prospective study, Br. Med. J., 305, 335, 10.1136/bmj.305.6849.335
Knekt, 1992, Serum antioxidant vitamins and risk of cataract, Br. Med. J., 305, 1392, 10.1136/bmj.305.6866.1392
Scandalios, 2005, Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defences, Braz. J. Med. Biol. Res., 38, 995, 10.1590/S0100-879X2005000700003
Deng, 2011, A novel antioxidant activity index (AAU) for natural products using the DPPH assay, Food Chem., 125, 1430, 10.1016/j.foodchem.2010.10.031
Floegel, 2011, Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods, J. Food Compos. Anal., 24, 1043, 10.1016/j.jfca.2011.01.008
Pellegrini, 2003, Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays, J. Nutr., 133, 2812, 10.1093/jn/133.9.2812
Müller, 2011, Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay, Food Chem., 129, 139, 10.1016/j.foodchem.2011.04.045
Saha, 2004, Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants, J. Ethnopharmacol., 92, 263, 10.1016/j.jep.2004.03.007
Dudonne, 2009, Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays, J. Agric. Food Chem., 57, 1768, 10.1021/jf803011r
Crittenden, 1996, Production, properties and applications of food-grade oligosaccharides, Trends Food Sci. Technol., 7, 353, 10.1016/S0924-2244(96)10038-8
Jadaun, 2019, Catalytic biosynthesis of levan and short-chain fructooligosaccharides from sucrose-containing feedstocks by employing the levansucrase from Leuconostoc mesenteroides MTCC10508, Int. J. Biol.Macromol, 127, 486, 10.1016/j.ijbiomac.2019.01.070
Gao, 2017, Expression and characterization of levansucrase from Clostridium acetobutylicum, J. Agric. Food Chem., 65, 867, 10.1021/acs.jafc.6b05165