Oligosaccharides and glycoconjugates in human milk: Their role in host defense

Journal of Mammary Gland Biology and Neoplasia - Tập 1 Số 3 - Trang 271-283 - 1996
David S. Newburg1,2
1Department of Biochemistry, Shriver Center for Mental Retardation, Waltham
2Harvard Medical School, Boston

Tóm tắt

Từ khóa


Tài liệu tham khảo

L. Svennerholm (1964). The gangliosides (review).J. Lipid Res. 5:143–155.

C. Grulee, H. Sanford, and H. Schwartz (1935). Breast and artificially fed infants; study of the age incidence in the morbidity and mortality in 20,000 cases.JAMA 104:1986–1988.

R. G. Feachem and M. A. Koblinsky (1984). Interventions for the control of diarrhoeal diseases among young children: promotion of breast-feeding.Bull. WHO 62:271–291.

P. W. Howie, J. S. Forsyth, S. A. Ogston, A. Clark, and C. du V Florey (1990). Protective effect of breast feeding against infection.Br. Med. J. 300:11–16.

D. W. Teele, J. O. Klein, B. Rosner, and Greater Boston Otitis Media Study Group. (1989). Epidemiology of otitis media during the first seven years of life in children in Greater Boston: A prospective, cohort study.J. Infect. Dis. 160:83–94

E. Telemo and L. A. Hanson (1996). Antibodies in milk.J. Mam. Gland Biol. Neoplasia 1:243–249.

K. A. Ryan-Poirier and Y. Kawaoka (1993). α2-Macroglobulin is the major neutralizing inhibitor of influenza A virus in pig serum.Virology 193:974–976.

B. S. McLean and I. H. Holmes (1981). Effects of antibodies, trypsin, and trypsin inhibitors on susceptibility of neonates to rotavirus infection.J. Clin. Microbiol. 13:22–29.

C. E. Isaacs, R. E. Litov, and H. Thormar (1995). Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk.J. Nutr. Biochem. 6:362–366.

J. K. Welsh, M. Arsenakis, R. J. Coelen, and J. T. May (1979). Effect of antiviral lipids, heat, and freezing on the activity of viruses in human milk.J. Infect. Dis. 140:322–328.

L. Rohrer, K. H. Winterhalter, J. Eckert, and P. Kohler (1986). Killing ofGiardia lamblia by human milk is mediated by unsaturated fatty acids.Antimicrob. Agents Chemother. 30:254–257.

A. Bezkorovainy, D. Grohlich, and J. H. Nichols (1979). Isolation of a glycopolypeptide fraction withLactobacillus bifidus subspeciespennsylvanicus growth-promoting activity from whole human milk casein.Am. J. Clin. Nutr. 32:1428–1432.

B. Reiter and J. H. Brock (1975). Inhibition ofEscherichia coli by bovine colostrum and post-colostral milk. I. Complement-mediated bactericidal activity of antibodies to a serum susceptible strain ofE. coli of the serotype O 111.Immunology 28:71–82.

J. G. Banks and H. S. Tranter (1985). Lysozyme. In B. Reiter (ed.),Antimicrobial Systems in Milk, Part 2, International Dairy Federation, University of Bath, England, pp. 39–48.

L. Bjorck (1985). The lactoperioxidase system. In B. Reiter (ed.),Antimicrobial Systems in Milk, Part 2, International Dairy Federation, University of Bath, England, pp. 18–30.

J. H. Nuijens, P. H. C. van Berkel, and F. L. Schanbacher (1996). Structure and biological actions of Lactoferrin.J. Mam. Gland Biol. Neoplasia 1:285–295.

M. C. Harmsen, P. J. Swart, M.-P. de Bethune, R. Pauwels, E. De Clercq, H. The, and D. K. F. Mekjer (1995). Antiviral effects of plasma and milk proteins: Lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replicationin vitro.J. Infect. Dis. 172:380–388.

K. Yamauchi, M. Tomita, T. J. Giehl, and R. T. D. Ellison (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment.Infect. Immun. 61:719–728.

D. S. Newburg and S. H. Neubauer (1995). Carbohydrates in milk. In R. G. Jensen (ed.),Handbook of Milk Composition, Academic Press, San Diego, pp. 273–349.

T. W. Keenan and S. Patton (1995). The structure of milk: Implications for sampling and storage. In R. G. Jensen (ed.),Handbook of Milk Composition, Academic Press, San Diego, pp. 5–50.

A. Laegreid, A.-B. Kolsto Otnaess, and J. Fuglesang (1986). Human and bovine milk: Comparison of ganglioside composition and enterotoxin-inhibitory activity.Pediatr. Res. 20:416–421.

K. Takamizawa, M. Iwamori, M. Mutai, and Y. Nagai (1986). Selective changes in gangliosides of human milk during lactation: a molecular indicator for the period of lactation.Biochim. Biophys. Acta 879:73–77.

J.-F. Bouhours and D. Bouhours (1979). Galactosylceramide is the major cerebroside of human milk fat globule membrane.Biochem. Biophys. Res. Commun. 88:1217–1222.

D. S. Newburg and P. Chaturvedi (1992). Neutral glycolipids of human and bovine milk.Lipids 27:923–927.

A.-B. Kolsto Otnaess, A. Laegreid, and K. Ertresvag (1983). Inhibition of enterotoxin fromEscherichia coli andVibrio cholerae by gangliosides from human milk.Infect. Immun. 40:563–569.

A. Laegreid and A.-B. Kolsto Otnaess (1987). Trace amounts of ganglioside GM1 in human milk inhibit enterotoxins fromVibrio cholerae andEscherichia coli.Life Sci. 40:55–62.

G. Ruiz-Palacios, J. Torres, N. Torres, E. Escamilla, B. Ruiz-Palacios, and J. Tamayo (1984). Cholera-like enterotoxin produced byCampylobacter jejuni heat labile enterotoxin.Infect. Immun. 43:314–319.

D. S. Newburg, S. Ashkenazi, and T. G. Cleary (1992). Human milk contains the Shiga toxin and Shiga-like toxin receptor glycolipid, Gb3.J. Infect. Dis. 166:832–836.

B. J. Stoll, J. Holmgren, P. K. Bardhan, I. Huq, W. B. Greenough, 3rd, P. Fredman, and L. Svennerholm (1980). Binding of intraluminal toxin in cholera: Trial of GM1 ganglioside charcoal.Lancet 2:888–891.

R. G. Jensen, B. Blanc, and S. Patton (1995). Particulate constituents in human and bovine milks. In R. G. Jensen (ed.),Handbook of Milk Composition, Academic Press, San Diego, pp. 50–51.

M. Polonovsky and A. Lespagnol (1933). Nouvelles acquisitions sur les composés glucidiques du lait de femme.Bulletin de la Societe de Chimie Biologique 15:320–349.

J. Montreuil and S. Mullet (1960). Étude des variations des constituants glucidiques du lait de femme au cours de la lactation.Bulletin de la Societe de Chimie Biologique 42:365–377.

D. Viverge, L. Grimmonprez, G. Cassanas, L. Bardet, and M. Solere (1990). Variations in oligosaccharides and lactose in human milk during the first week of lactation.J. Pediatr. Gastroenterol. Nutr. 11:361–364.

G. V. Coppa, O. Gabrielli, P. Pierani, C. Catassi, A. Carlucci, and P. L. Giorgi (1993). Changes in carbohydrate composition in human milk over 4 months of lactation.Pediatrics 91:637–641.

B. Stahl, S. Thurl, J. Zeng, M. Karas, F. Hillenkamp, M. Steup, and G. Sawatzki (1994). Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry.Anal. Biochem. 223:218–226.

B. Andersson, O. Porras, L. A. Hanson, T. Lagergard, and C. Svanborg-Eden (1986). Inhibition of attachment ofStreptococcus pneumoniae andHaemophilus influenzae by human milk and receptor oligosaccharides.J. Infect. Dis. 153:232–237.

A. Cravioto, A. Tello, H. Villafan, J. Ruiz, S. del Vedovo, and J.-R. Neeser (1991). Inhibition of localized adhesion of enteropathogenicEscherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk.J. Infect. Dis. 163:1247–1255.

L. E. Cervantes, D. S. Newburg, and G. M. Ruiz-Palacios (1995). α 1–2 Fucosylated chains (H-2 and Lewisb) are the main human milk receptor analogs forCampylobacter. Pediatr. Res. 37:171A.

T. G. Cleary, J. P. Chambers, and L. K. Pickering (1983). Protection of suckling mice from heat-stable enterotoxin ofEscherichia coli by human milk.J. Infect. Dis. 148:1114–1119.

D. S. Newburg, L. K. Pickering, R. H. McCluer, and T. G. Cleary (1990). Fucosylated oligosaccharides of human milk protect suckling mice from heat-stabile enterotoxin ofEscherichia coli.J. Infect. Dis. 162:1075–1080.

J. K. Crane, S. S. Azar, A. Stam, and D. S. Newburg (1994). Oligosaccharides from human milk block binding and activity of theEscherichia coli heat-stable enterotoxin (STa) in T84 intestinal cells.J. Nutr. 124:2358–2364.

D. S. Newburg, P. Chaturvedi, R. Van, T. G. Cleary, and L. K. Pickering (1992). Isolation of the human milk oligosaccharide which protects mice from heat-stable enterotoxin ofE. coli. Pediatr. Res. 31:172A.

G. Y. Wiederschain and D. S. Newburg (1995). Human milk fucosyltransferase and α-L-fucosidase activities change during the course of lactation.J. Nutr. Biochem. 6:582–587.

D. S. Newburg, P. Chaturvedi, C. D. Warren, S. Lui, G. M. Ruiz-Palacios, and L. K. Pickering (1996). Human milk oligosaccharide profiles.FASEB J. 10:553A.

A. Sanchez-Pozo, J. Lopez, M. L. Pita, A. Izquierdo, E. Guerrero, F. Sanchez-Medina, A. Martinez Valverde, and A. Gil (1986). Changes in the protein fractions of human milk during lactation.Ann. Nutr. Metabol. 30:15–20.

P. Jolles and A. M. Fiat (1979). The carbohydrate portions of milk glycoproteins.J. Dairy Res. 46:187–191.

T. Saito, T. Itoh, and S. Adachi (1988). Chemical structure of neutral sugar chains isolated from human mature milk κ-casein.Biochim. Biophys. Acta 964:213–220.

A. Kobata (1977). Milk glycoproteins and oligosaccharides. In M. I. Horowitz and W. Pigman (eds.),Mammalian Glycoproteins and Glycolipids (Vol. I), Academic Press, New York, pp. 423–440.

G. Aniansson, B. Andersson, R. Lindstedt, and C. Svanborg (1990). Anti-adhesive activity of human casein againstStreptococcus pneumoniae andHaemophilus influenzae.Microb. Pathog. 8:315–323.

S. Ashkenazi, D. S. Newburg, and T. G. Cleary (1991). The effect of human milk on the adherence of enterohemorrhagicE. coli to rabbit intestinal cells.Adv. Exp. Med. Biol. 310:173–177.

M. K. Shimizu, K. Yamauchi, Y. Miyauchi, T. Sakurai, K. Tokugawa, and R. A. J. McIlhinney (1986). High-M r glycoprotein profiles in human milk serum and fat-globule membrane.Biochem. J. 233:725–730.

J. J. Ho, B. Siddiki, and Y. S. Kim (1995). Association of sialyl-Lewis(a) and sialyl-Lewis(x) with MUC-1 apomucin in a pancreatic cancer cell line.Cancer Res. 55:3659–3663.

G. Parry, J. Li, J. Stubbs, M. J. Bissell, C. Schmidhauser, A. P. Spicer, and S. J. Gendler (1992). Studies of Muc-1 mucin expression and polarity in the mouse mammary gland demonstrate developmental regulation of Muc-1 glycosylation and establish the hormonal basis for mRNA expression.J. Cell Sci. 101:191–199.

W. Buchheim, U. Welsch, G. E. Huston, and S. Patton (1988). Glycoprotein filament removal from human milk fat globules by heat treatment.Pediatrics 81:141–146.

S. Patton, G. E. Huston, R. Jenness, and Y. Vaucher (1989). Differences between individuals in high-molecular weight glycoproteins from mammary epithelia of several species.Biochim. Biophys. Acta 980:333–338.

R. H. Yolken, J. A. Peterson, S. L. Vonderfecht, E. T. Fouts, K. Midthun, and D. S. Newburg (1992). Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis.J. Clin. Invest. 90:1984–1991.

H. Schroten, F. G. Hanisch, R. Plogmann, J. Hacker, G. Uhlenbruck, R. Nobis-Bosch, and V. Wahn (1992). Inhibition of adhesion of S-fimbriatedEscherichia coli to buccal epithelial cells by human milk fat globule membrane components: a novel aspect of the protective function of mucins in the nonimmunoglobulin fraction.Infect. Immun. 60:2893–2899.

M. Shimizu, N. Uryu, and K. Yamauchi (1981). Presence of heparan sulfate in the fat globule membrane of bovine and human milk.Agric. Biol. Chem. 45:741–745.

D. S. Newburg, R. J. Linhardt, S. A. Ampofo, and R. H. Yolken (1995). Human milk glycosaminoglycans inhibit HIV glycoprotein gp120 binding to its host cell CD4 receptor.J. Nutr. 125:419–424.

D. S. Newburg, R. P. Viscidi, A. Ruff, and R. H. Yolken (1992). A human milk factor inhibits binding of human immuno-deficiency virus to the CD4 receptor.Pediatr. Res. 31:22–28.

M. McClure, J. Moore, D. Blanc, P. Scotting, G. Cook, R. Keynes, J. Weber, D. Davies, and R. Weiss (1992). Investigations into the mechanism by which sulfated polysaccharides inhibit HIV infectionin vitro.AIDS Res. Hum. Retroviruses 8:19–26.

A. Laegreid, A.-B. Kolsto Otnaess, I. Orstavik, and K. H. Carlsen (1986). Neutralizing activity in human milk fractions against respiratory syncytial virus.Acta Paediatr. Scand. 75:696–701.

D. M. Lambert (1988). Role of oligosaccharides in the structure and function of respiratory syncytial virus glycoproteins.Virology 164:458–466.

J.-F. Bouhours and D. Bouhours (1979). Galactosylceramide is the major cerebroside of human milk fat globule membrane.Biochem. Biophys. Res. Commun. 88:1217–1222.