Oligosaccharide model of the vascular endothelial glycocalyx in physiological flow
Tóm tắt
Experiments have consistently revealed the pivotal role of the endothelial glycocalyx layer in vasoregulation and the layer’s contribution to mechanotransduction pathways. However, the exact mechanism by which the glycocalyx mediates fluid shear stress remains elusive. This study employs atomic-scale molecular simulations with the aim of investigating the conformational and orientation properties of highly flexible oligosaccharide components of the glycocalyx and their suitability as transduction molecules under hydrodynamic loading. Fluid flow was shown to have nearly no effect on the conformation populations explored by the oligosaccharide, in comparison with static (diffusion) conditions. However, the glycan exhibited a significant orientation change, when compared to simple diffusion, aligning itself with the flow direction. It is the tethered end of the glycan, an asparagine amino acid, which experienced conformational changes as a result of this flow-induced bias. Our results suggest that shear flow through the layer can have an impact on the conformational properties of saccharide-decorated transmembrane proteins, thus acting as a mechanosensor.
Tài liệu tham khảo
Adamo L, García-Cardeña G (2012) The vascular origin of hematopoietic cells. Dev Biol 362(1):1–10. https://doi.org/10.1016/j.ydbio.2011.09.008
Bammer R, Hope TA, Aksoy M, Alley MT (2007) Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5 T and 3.0 T in combination with parallel imaging. Magn Resonance Med 57(1):127–140. https://doi.org/10.1002/mrm.21109
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684. https://doi.org/10.1063/1.448118
Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Götz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 13. University of California, San Francisco. http://ambermd.org/doc12/AmberTools13.pdf
Chalmers G, Glushka J, Foley B, Woods R, Prestegard J (2016) Direct NOE simulation from long MD trajectories. J Magn Reson 265:1–9. https://doi.org/10.1016/j.jmr.2016.01.006
Chappell D, Dörfler N, Jacob M, Rehm M, Welsch U, Conzen P, Becker BF (2010) Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion. Shock (Augusta, GA) 34(2):133–139. https://doi.org/10.1097/SHK.0b013e3181cdc363
Chappell D, Heindl B, Jacob M, Annecke T, Chen C, Rehm M, Conzen P, Becker BF (2011) Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology 115(3):483–491. https://doi.org/10.1097/ALN.0b013e3182289988
Chen Z, Lou J, Zhu C, Schulten K (2008) Flow-induced structural transition in the beta-switch region of glycoprotein Ib. Biophys J 95(3):1303–1313. https://doi.org/10.1529/biophysj.108.132324
Chien S (2008) Effects of disturbed flow on endothelial cells. Ann Biomed Eng 36(4):554–562. https://doi.org/10.1007/s10439-007-9426-3
Cruz-Chu ER, Malafeev A, Pajarskas T, Pivkin IV, Koumoutsakos P (2014) Structure and response to flow of the glycocalyx layer. Biophys J 106(1):232–243. https://doi.org/10.1016/j.bpj.2013.09.060
Dewey CF (1984) Effects of fluid flow on living vascular cells. J Biomech Eng 106(1):31–35. http://www.ncbi.nlm.nih.gov/pubmed/6539406
Ensley AE, Nerem RM, Anderson DEJ, Hanson SR, Hinds MT (2012) Fluid shear stress alters the hemostatic properties of endothelial outgrowth cells. Tissue Eng Part A 18(1–2):127–136. https://doi.org/10.1089/ten.TEA.2010.0290
Eriksson M, Lindhorst TK, Hartke B (2008) Differential effects of oligosaccharides on the hydration of simple cations. J Chem Phys 128(10):105. https://doi.org/10.1063/1.2873147
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577. https://doi.org/10.1063/1.470117
Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93(10):e136–e142. https://doi.org/10.1161/01.RES.0000101744.47866.D5
Fu BM, Tarbell JM (2013) Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdiscip Rev Syst Biol Med 5(3):381–390. https://doi.org/10.1002/wsbm.1211
Giantsos-Adams KM, Koo AJA, Song S, Sakai J, Sankaran J, Shin JH, Garcia-Cardena G, Dewey CF (2013) Heparan sulfate regrowth profiles under laminar shear flow following enzymatic degradation. Cell Mol Bioeng. https://doi.org/10.1007/s12195-013-0273-z
Gouverneur M, van den Berg B, Nieuwdorp M, Stroes E, Vink H (2006) Vasculoprotective properties of the endothelial glycocalyx : effects of fluid shear stress. J Intern Med. https://doi.org/10.1111/j.1365-2796.2006.01625.x
Halliday I, Atherton M, Care CM, Collins MW, Evans D, Evans PC, Hose DR, Khir AW, König CS, Krams R, Lawford PV, Lishchuk SV, Pontrelli G, Ridger V, Spencer TJ, Ventikos Y, Walker DC, Watton PN (2011) Multi-scale interaction of particulate flow and the artery wall. Med Eng Phys 33(7):840–848. https://doi.org/10.1016/j.medengphy.2010.09.007
Henry CB, Duling BR (1999) Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol 277(2 Pt 2):H508–H514. http://www.ncbi.nlm.nih.gov/pubmed/10444475
Humphrey W, Dalke A, Schulten K (1996) {VMD}—{V}isual {M}olecular {D}ynamics. J Mol Graph 14:33–38
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926. https://doi.org/10.1063/1.445869
Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652. https://doi.org/10.1038/nsb0902-646
Kirschner KN, Yongye AB, Tschampel SM, Gonza J, Daniels CR, Foley BL, Woods RJ (2007) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem. https://doi.org/10.1002/jcc.20820
Koo A, Dewey CF, García-Cardeña G (2013) Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am J Physiol Cell Physiol 304(2):C137–146. https://doi.org/10.1152/ajpcell.00187.2012
Koplik J, Banavar JR, Willemsen JF (1988) Molecular dynamics of Poiseuille flow and moving contact lines. Phys Rev Lett 60(13):1282–1286
Koplik J, Banavar JR, Willemsen JF (1989) Molecular dynamics of fluid flow at solid surfaces. Phys Fluids A Fluid Dyn 1(5):781. https://doi.org/10.1063/1.857376
Kotsalis E, Walther J, Koumoutsakos P (2004) Multiphase water flow inside carbon nanotubes. Int J Multiphase Flow 30(7–8):995–1010. https://doi.org/10.1016/j.ijmultiphaseflow.2004.03.009
Landau L, Lifshitz E (1975) Statistical physics, third edition, part 1: volume 5. Butterworth-Heinemann; 3 edition. http://www.amazon.com/Statistical-Physics-Third-Edition-Part/dp/0750633727
Lanotte L, Tomaiuolo G, Misbah C, Bureau L, Guido S (2014) Red blood cell dynamics in polymer brush-coated microcapillaries: a model of endothelial glycocalyx in vitro. Biomicrofluidics 8(1):014–104. https://doi.org/10.1063/1.4863723
Mulivor AW, Lipowsky HH (2002) Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol Heart Circ Physiol 283(4):H1282–1291. https://doi.org/10.1152/ajpheart.00117.2002
Nybo L, Nielsen B (2001) Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. J Physiol 534(1):279–286. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00279.x
Pahakis MY, Kosky JR, Dull RO, Tarbell JM (2007) The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 355:228–233. https://doi.org/10.1016/j.bbrc.2007.01.137
Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14(2):103–114. https://doi.org/10.1093/glycob/cwh008
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. https://doi.org/10.1002/jcc.20289
Ryckaert JP, Ciccotti G, Berendsen HJ (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341. https://doi.org/10.1016/0021-9991(77)90098-5
Siegel G, Walter A, Kauschmann A, Malmsten M, Buddecke E (1996) Anionic biopolymers as blood flow sensors. Biosens Bioelectron 11(3):281–294. http://www.ncbi.nlm.nih.gov/pubmed/8562009
Sokhan VP, Nicholson D, Quirke N (2002) Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes. J Chem Phys 117(18):8531. https://doi.org/10.1063/1.1512643
Tarbell JM, Ebong EE (2008) The endothelial glycocalyx: a mechano-sensor and -transducer. Sci Signal 1(40):pt8. http://www.ncbi.nlm.nih.gov/pubmed/18840877
Turnbull JE, Field RA (2007) Emerging glycomics technologies. Nat Chem Biol 3(2):74–77. https://doi.org/10.1038/nchembio0207-74
Wang C, Lu H, Schwartz MA (2012) A novel in vitro flow system for changing flow direction on endothelial cells. J Biomech 45(7):1212–1218. https://doi.org/10.1016/j.jbiomech.2012.01.045
Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21(12):1049. https://doi.org/10.1002/1096-987X(200009)21:12%3c1049::AID-JCC3%3e3.3.CO;2-6
Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Ann Rev Biomed Eng 9(1):121–167. http://www.ncbi.nlm.nih.gov/pubmed/17373886
Woods RJ, Dwek RA, Edge CJ, Fraser-Reid B (1995) Molecular mechanical and molecular dynamic simulations of glycoproteins and oligosaccharides. 1. GLYCAM_93 parameter development. J Phys Chem 99(11):3832–3846. https://doi.org/10.1021/j100011a061
Woods RJ, Pathiaseril A, Wormald MR, Edge CJ, Dwek RA (1998) The high degree of internal flexibility observed for an oligomannose oligosaccharide does not alter the overall topology of the molecule. Eur J Biochem FEBS 258(2):372–386. http://www.ncbi.nlm.nih.gov/pubmed/9874202
Woods Group (2005) Carbohydrate builder (http://www.glycam.com). In: GLYCAM web Complex Carbohydrate Research Center, University of Georgia, Athens, GA
Yusuf S, Wood D, Ralston J, Reddy KS (2015) The World Heart Federation’s vision for worldwide cardiovascular disease prevention. Lancet (Lond, Engl) 386(9991):399–402. https://doi.org/10.1016/S0140-6736(15)60265-3
Zou X, Liu Y, Chen Z, Cárdenas-Jirón GI, Schulten K (2010) Flow-induced beta-hairpin folding of the glycoprotein Ibalpha beta-switch. Biophys J 99(4):1182–1191. https://doi.org/10.1016/j.bpj.2010.05.035