Olfactory flow in the sturgeon is externally driven
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology - Tập 235 - Trang 211-225 - 2019
Tài liệu tham khảo
Abel, 2010, Functional morphology of the nasal region of a hammerhead shark, Comp. Biochem. Physiol. A, 155, 464, 10.1016/j.cbpa.2009.10.029
Agbesi, 2016, Complex flow in the nasal region of guitarfishes, Comp. Biochem. Physiol. A, 193, 52, 10.1016/j.cbpa.2015.12.007
Agbesi, 2016, Motion-driven flow in an unusual piscine nasal region, Zoology, 119, 500, 10.1016/j.zool.2016.06.008
Ayachit, 2016
Bashor, 1974, Ciliary action and normal movement of odorant wavefronts in garfish nasal capsule of Lepisosteus osseus, Experientia, 30, 777, 10.1007/BF01924182
Berg, 1962
Cai, 2013, Swimming capability and swimming behavior of juvenile Acipenser schrenckii, J. Exp. Zool., 319A, 149, 10.1002/jez.1780
Camacho, 2010, Study of the olfactory epithelium in the developing sturgeon. Characterization of the crypt cells, Chem. Senses, 35, 147, 10.1093/chemse/bjp091
Chen, 1994, Olfactory organ of Acipenseriformes and comparison with other Actinopterygians, J. Morphol., 222, 241, 10.1002/jmor.1052220304
Cox, 2008, Hydrodynamic aspects of fish olfaction, J. Roy. Soc. Interface, 5, 575, 10.1098/rsif.2007.1281
Cox, 2013, Ciliary function in the olfactory organs of sharks and rays, Fish Fish., 14, 364, 10.1111/j.1467-2979.2012.00476.x
Denny, 1993
Deslauriers, 2012, The effects of temperature on swimming performance of juvenile shortnose sturgeon (Acipenser brevirostrum), J. Appl. Ichthyol., 28, 176, 10.1111/j.1439-0426.2012.01932.x
Devitsyna, 1992, Development of chemosensory organs in the Siberian sturgeon Acipenser baerii and stellate sturgeon A. stellatus, Vopr. Ikhtiol., 32, 167
Douglas, 1985
Ferrando, 2017, Gross anatomy and histology of the olfactory rosette of the shark Heptranchias perlo, Zoology, 122, 27, 10.1016/j.zool.2017.02.003
Garwood, 2019, TIFF images from X-ray scan of Huso dauricus, Mendeley Data, v1
Hansen, 2005, Diversity in the olfactory epithelium of bony fishes: development, lamellar arrangement, sensory neuron types and transduction components, J. Neurocytol., 34, 183, 10.1007/s11068-005-8353-1
Haysom, 2019, STL model of head of Huso dauricus, Mendeley Data, v1
Holl, 1968, The olfactory organ of the deep-sea fish Aphanopus carbo (Percomorphi, Trichiuridae), Helgoländer wiss. Meeresunters, 18, 404, 10.1007/BF01611678
Holmes, 2011, Three-dimensional structure of the nasal passageway of a hagfish and its implications for olfaction, Anat. Rec., 294, 1045, 10.1002/ar.21382
Howard, 2013, Functional nasal morphology of chimaerid fishes, J. Morphol., 274, 987, 10.1002/jmor.20156
Incropera, 2013
Kasumyan, 2004, The olfactory system in fish: structure, function, and role in behavior, J. Ichthyol., 44, S180
Koshelev, 2014, Age and growth of kaluga Acipenser dauricus from the estuary of the Amur and its lagoon, J. Ichthyol., 54, 165, 10.1134/S0032945214020052
Krykhtin, 1997, Endemic sturgeons of the Amur River: kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenckii, Environ. Biol. Fish., 48, 231, 10.1023/A:1007358027263
Liao, 2000, Function of the heterocercal tail in white sturgeon: flow visualization during steady swimming and vertical maneuvering, J. Exp. Biol., 203, 3585, 10.1242/jeb.203.23.3585
Lim, 2000, Dye and smoke visualization, 43
Limaye, 2012, Drishti: a volume exploration and presentation tool, 85060X
Lugt, 1983
Massey, 1989
Meng, 1981, A study of the olfactory organ of the sharks, Trans. Chinese Ichthyol. Soc., 2, 1
Nelson, 2006
Peake, 1997, Relating swimming performance of lake sturgeon, Acipenser fulvescens, to fishway design, Can. J. Fish. Aquat. Sci., 54, 1361, 10.1139/f97-039
Pyatkina, 1975, Electron microscopic study of the olfactory organ in the sterlet Acipenser ruthenus, Arch. Anat. Gistol. Embriol., 68, 85
Quilter, 2019, STL model of head of Huso dauricus, with tapered extension, Mendeley Data, v1
Ramsey, 2015, Towards an understanding of molecule capture by the antennae of male beetles belonging to the genus Rhipicera (Coleoptera, Rhipiceridae), Anat. Rec., 298, 1519, 10.1002/ar.23188
Reiten, 2017, Motile-cilia-mediated flow improves sensitivity and temporal resolution of olfactory computations, Curr. Biol., 27, 166, 10.1016/j.cub.2016.11.036
Rygg, 2013, A computational study of the hydrodynamics in the nasal region of a hammerhead shark (Sphyrna tudes): implications for olfaction, PLoS One, 8, 1
Settles, 2005, Sniffers: fluid-dynamic sampling for olfactory trace detection in Nature and homeland security, J. Fluids Eng., 127, 189, 10.1115/1.1891146
Shapiro, 1961
Shapiro, 1972, Pressure fields and fluid acceleration, 39
Teichmann, 1959, Über die Leistung des Geruchssinnes beim Aal [Anguilla anguilla (L.)] (On the performance of the sense of smell of the eel), Z. vgl. Physiol., 42, 206, 10.1007/BF00333612
Thiem, 2015, Accelerometer-derived activity correlates with volitional swimming speed in lake sturgeon (Acipenser fulvescens), Can. J. Zool., 93, 645, 10.1139/cjz-2014-0271
Tu, 2018
Vecsei, 2004, Sturgeon ecomorphology: a descriptive approach, 103
Vogel, 1988, How organisms use flow-induced pressures, Am. Sci., 76, 28
Vogel, 1994
Wang, 2007, Effect of thrust-vectoring jets on delta wing aerodynamics, J. Aircraft, 44, 1877, 10.2514/1.30568
Weller, 1998, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys., 12, 620, 10.1063/1.168744
Wilga, 1999, Locomotion in sturgeon: function of the pectoral fins, J. Exp. Biol., 202, 2413, 10.1242/jeb.202.18.2413
Zeiske, 2003, Early development of the olfactory organ in sturgeons of the genus Acipenser: a comparative and electron microscopic study, Anat. Embryol., 206, 357, 10.1007/s00429-003-0309-6