Olfactory Dysfunction in Neurodegenerative Diseases

Concepció Marı́n1, Dolores Vilas2, Cristóbal Langdon3, Isam Alobid3, Mauricio López-Chacón4, Antje Haehner5, Thomas Hummel5, Joaquim Mullol4
1INGENIO, IRCE, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CELLEX, Department 2B, Barcelona, Spain
2Neurodegenerative Diseases Unit, Neurology Service, University Hospital Germans Trias i Pujol, Badalona, Spain
3INGENIO, IRCE, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CELLEX, Department 2B, Villarroel 170, 08036, Barcelona, Catalonia, Spain
4Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Barcelona, Catalonia, Spain
5Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hummel T, Landis BN, Hüttenbrik KB. Smell and taste disorders. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2011;10:Doc04.

Doty RL, Kamath V. The influences of age on olfaction: a review. Front Psychol. 2014;5:1–20.

Ottaviano G, Zuccarello D, Frasson G, Scarpa B, Nardello E, Foresta C, et al. Olfactory sensitivity and sexual desire in young adult and elderly men: an introductory investigation. Am J Rhinol Allergy. 2013;27:157–61.

Ottaviano G, Frasson G, Nardello E, Martini A. Olfaction deterioration in cognitive disorders in the elderly. Aging Clin Exp Res. 2016;28:37–45.

Sorokowska A, Sorokowski P, Havlicek J. Body odor based personality judgements: the effects of fraganced cosmetics. Front Psychol. 2016;7:530.

Mullol J, Alobid I, Mariño-Sánchez F, Quintó L, de Haro J, Bernal-Sprekelsen M, et al. Furthering the understanding of olfaction, prevalence of loss of smell and risk factors: a population-based survey (OLFACAT study). BMJ Open. 2012;2:e001256.

Rey NL, Wesson DW, Brundin P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis. 2018;109:226–48.

Boesveldt S, Postma EM, Boak D, et al. Anosmia—a clinical review. Chem Senses. 2017;42:513–23.

Doty RL. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrates? Lancet Neurol. 2017;16:478–88.

Mariño-Sánchez FS, Alobid I, Centellas S, Alberca C, Guilemany JM, Canals JM, et al. Smell training increases cognitive smell skills of wine tasters compared to the general healthy population. The WINECAT Study. Rhinology. 2010;48:273–6.

Banks SJ, Sreenivasan KR, Weintraub DM, et al. Structural and functional MRI differences in master sommeliers: a pilot study on expertise in the brain. Front Hum Neurosci. 2016;10:414.

Delon-Martin C, Palilly J, Fonlupt P, Veyrac A, Royet JP. Perfurmers’ expertise induces structural reorganization in olfactory brain regions. Neuroimage. 2013;68:55–62.

Frasnelli J, Hummel T. Olfactory dysfunction and daily life. Eur Arch Otorhinolaryngol. 2005;262:231–5.

Attems J, Wlaker L, Jellinger KA. Olfaction and aging: a mini-review. Gerontology. 2015;61:485–90.

Vassilaki M, Christianson TJ, Mielke MM, et al. Neuroimaging biomarkers and impaired olfaction in cognitively normal individuals. Ann Neurol. 2017;81:871–82.

Temmel AF, Quint C, Schickinger-Fischer B, Klimek L, Stoller E, Hummel T. Characteristics of olfactory disorders in relation to major causes of olfactory loss. Arch Otolaryngol Head Neck Surg. 2002;128:635–41.

Hoffman HJ, Rawal S, Li CM, Duffy VB. New chemosensory component in the US National Health and Nutrition Examination Survey (NHANES): first-year results for measured olfactory dysfunction. Rev Endrocr Metab Disord. 2016;17:221–40.

Hummel T, Nordin S. Olfatory disorders and their consequences for quality of life. Acta Otolaryngol. 2005;125:116–21.

Pence TS, Reiter ER, DiNardo LJ, Costanzo RM. Risk factors for hazardous events in olfactory-impaired patients. JAMA Otolaryngol Head Neck Surg. 2014;140:951–5.

Jaume F, Quintó L, Alobid J, Mullol J. Overuse of diagnostic tools and medications in acute rhinosinusitis in Spain: a population-based study (the PROSINUS study). BMJ Open. 2018;8:e018788.

Langdon C, Guillemany JM, Valls M, Alobid I, Bartra J, Dávila I, et al. Allergic rhinitis causes loss of smell in children. Pediatr Allergy Immunol. 2016;27:867–70.

Langdon C, Lehrer E, Berenguer J, Laxe S, Alobid I, Quintó L, et al. Olfactory training in posttraumatic smell impairment: mild improvement in threshold performances-results from a randomized controlled study. J Neurotrauma. 2018;

Bahuleyan B, Singh S. Olfactory memory impairment in neurodegenerative diseases. J Clin Diagnostic Res. 2012;6:1437–41.

Doty RL. Olfaction in Parkinson’s diseases and related disorders. Neurobiol Dis. 2012;46:527–52.

Hummel T, Whitcroft KL, Andrews P, et al. Position paper on olfactory dysfunction. Rhinol Suppl. 2017;54:1–30.

Morley JF, Duda JE. Olfaction as a biomarker in Parkinson’s disease. Biomark Med. 2010;4:661–70.

Bowman GL. Biomarkers for early detection of Parkinson’s disease: a scent of consistency with olfactory dysfunction. Neurology. 2017;89:1432–4.

Fullard ME, Morley JF, Duda JE. Olfactory dysfunction as an early biomarker in Parkinson’s disease. Neurosci Bull. 2017;33:515–25.

Krismer F, Pinter B, Mueller C, et al. Sniffing the diagnosis: olfactory testing in neurodegenerative parkinsonism. Parkinsonism Relat Disord. 2017;35:36–41.

Morley JF, Cohen A, Silveira-Moriyama L, et al. Optimizing olfactory testing for the diagnosis of Parkinson’s disease: item analysis of the university of Pennsylvania smell identification test. NPJ Parkinsonism Dis. 2018;4:2.

Tabert MH, Liu X, Doty RL, Serby M, Zamora D, Pelton GH, et al. A 10-item smell identification scale related to risk for Alzheimer’s disease. Ann Neurol. 2005;58:155–60.

Growdon ME, Schultz AP, Dagley AS, Amarigilio RE, Hedden T, Rentz DM, et al. Odor identification and Alzheimer disease biomarkers in clinically normal elderly. Neurology. 2015;84:2153–60.

Lafaille-Magnan ME, Poirier J, Etienne P, Tremblay-Mercier J, Frenette J, Rosa-Neto P, et al. PREVENT-AD Research Group. Odor identification as a biomarker of preclinical AD in older adults at risk. Neurology. 2017;89:327–35.

Woodward MR, Amrutkar CV, Ahah HC, Benedict RH, Rajakrishnan S, Doody RS, et al. Validation of olfactory deficit as a biomarker of Alzheimer disease. Neurol Clin Pract. 2017;7:5–14.

McShane RH, Nagy Z, Esiri MM, King E, Joachim C, Sulivan N, et al. Anosmia in dementia is associated with Lewy bodies rather than Alzheimer’s pathology. J Neurol Neurosurg Psychiatry. 2001;70:739–43.

McKeith I, Taylor JP, Thomas A, Donaghy P, Kane J. Revisiting DLB diagnosis: a consideration of prodromal DLB and of the diagnostic overlap with Alzheimer disease. J Geriatr Psychiatry Neurol. 2016;29:249–53.

Mahlknecht P, Iranzo A, Högi B, et al. Olfactory dysfunction predicts early transition to a Lewy body disease in idiopathic RBD. Neurology. 2015;84:654–8.

Wilson DA, Sullivan RM. Cortical processing of odor subjects. Neuron. 2011;72:506–19.

Misiak M, Hipolito MM, Ressom HW, Obisesan TO, Manaye KF, Nwlia EA. Apo E4 alleles and impaired olfaction as predictors of Alzheimer’s disease. Clin Exp Psychol. 2017;3:169.

Kay RB, Meyer EA, Illig KR, Brunjes PC. Spatial distribution of neural activity in the anterior olfactory nucleus evoked by odor and electrical stimulation. J Comp Neurol. 2011;519:277–89.

Gottfried JA. Central mechanisms of odour object perception. Nat Rev Neurosci. 2010;11:628–41.

Doty RL, Philip S, Reddy K, Kerr KL. Influences of antihypertensive and antihyperlipidemic drugs on the senses of taste and smell: a review. J Hypertens. 2003;21:1805–13.

Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65:175–87.

Masurkar AV, Devanand DP. Olfactory dysfunction in the elderly: basic circuitry and alterations with normal aging and Alzheimer’s disease. Curr Geriatr Rep. 2014;3:91–100.

Verhagen JV, Wesson DW, Netoff TI, White JA, Wachowiak M. Sniffing controls and adaptive filter of sensory input to the olfactory bulb. Nat Neurosci. 2007;10:631–9.

Carey RM, Wachowiak M. Effect of sniffing on the temporal structure of mitral/tufted cell output from the olfactory bulb. J Neurosci. 2011;31:10615–26.

Chess A, Simon I, Cedar H, Axel R. Allelic inactivation regulates olfactory receptor gene expression. Cell. 1994;78:823–34.

Shykind BM, Rohani SC, O’Donnell S, Nemes A, Mendelsohn M, Sun Y, et al. Gene switching and the stability of odorant receptor gene choice. Cell. 2004;117:801–15.

Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, et al. Visualizing an olfactory sensory map. Cell. 1996;87:675–86.

Liu A, Savya S, Urban NN. Early odorant exposure increases the number of mitral cells associated with a single glomerulus. J Neurosci. 2016;36:11646–53.

Bushdid C, Magnasco MO, Vosshall LB, Keller A. Humans can discriminate more than 1 trillion olfactory stimuli. Science. 2014;343:1370–272.

Dunkel A, Steinhaus M, Kotthoff M, Nowak B, Krautwurst D, Schieberle P, et al. Nature’s chemical signatures in human olfaction: a foodborne perspective for future biotechnology. Angew Chem Int Ed Engl. 2014;53:7124–43.

Keller A, Vosshall LB. Olfactory perception of chemically diverse molecules. BMC Neurosci. 2016;17:55.

Nagayama S, Takakhashi YK, Yoshihara Y, Mori K. Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb. J Neurophysiol. 2004;91:2532–40.

Linster C, Fontanini A. Functional neuromodulation of chemosensation in vertebrates. Curr Opin Neurobiol. 2014;29:82–7.

Bendahmane M, Cameron M, Ennis M, Fletcher ML. Increased olfactory bulb acetycholine bi-directionally modulates glomerular odor sensitivity. Scientifc Reports. 2016;6:25808.

Huang Z, Thiebaud N, Fadool DA. Differential serotonergic modulation across the main and accessory olfactory bulbs. J Physiol. 2017;595:3515–33.

Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson’s disease. Nature Neurosci. 2004;7:726–35.

Grier BD, Belluscio L, Cheetham CE. Olfactory sensory activity modulates microglial-neuronal interactions during dopaminergic cell loss in the olfactory bulb. Front Cell Neurosci. 2016;10:178.

Höglinger GU, Alvarez-Fischer D, Arias-Carrión I, Djufri M, Windolph A, Keber U, et al. A new dopaminergic nigro-olfactory projection. Acta Neuropathol. 2015;130:333–48.

Alvarez-Buylla A, Kohwi M, Nguyen TM, Merkle FT. The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb Symp Quant Biol. 2008;73:357–65.

Lledo PM, Valley M. Adult olfactory bulb neurogenesis. Cold Spring Harb Perspect Biol. 2016;8:a018945.

Hardy D, Saghatelyan A. Different forms of structural plasticity in the adult olfactory bulb. Neurogenesis. 2017;4:e1301850.

Ubeda-Bañón I, Saiz-Sanchez D, de la Rosa-Prieto C, Martinez-Marcos A. α-Synuclein in the olfactory system in Parkinsons’ disease: role of neural connections on spreading pathology. Brain Struct Funct. 2014;19:1513–26.

Doty RL. Olfactory dysfunction and its measurement in the clinic. World J Otorhinolaryngol Head Neck Surg. 2015;1:28–33.

Doty RL, Deems DA, Stellar S. Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology. 1988;38:1237–44.

Silveira-Moriyama L, Sirisena D, Gamage P, Gamage R, de Silva R, Lees AJ. Adapting the sniffin’ sticks to diagnose Parkinson’s disease in Sri Lanka. Mov Disord. 2009;24:1229–33.

Kobal G, Hummel T, Sekinger B, Baez S, Roscher S, Wolf S. “Sniffin’sticks”: screening of olfactory performance. Rhinology. 1996;34:222–6.

Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G. “Sniffin’ sticks”: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses. 1997;22:39–52.

Haehner A, Tosch C, Wolz M, Klingelhoefer L, fauser M, Storch A, et al. Olfactory training in patients with Parkinson’s disease. PLoS One. 2013;8:e61680.

Doty RL, Marcus A, Lee WW. Development of the 12-item cross-cultural smell identification test (CC-SIT). Laryngoscope. 1996;106:353–6.

Rodriguez-Violante M, Glonzalez-Latapi P, Camacho-Ordoñez A, Martínez-Ramírez D, Morales-Briceño H, Cervantes-Arriaga A. Low specificity and sensitivity of smell identification testing for the diagnosis of Parkinson’s disease. Arq Neuropsiquiatry. 2014;72:33–7.

Cardesin A, Alobid I, Benítez P, Sierra E, de Haro J, Bernal-Sprekelsen M, et al. Barcelona Smell Test-24 (BAST-24): validation and smell characteristics in the healthy Spanish population. Rhinology. 2006;44:83–9.

Iijima M, Kobayakawa T, Saito S, Osawa M, Tsutsumo Y, Hashimoto S, et al. Smell identification in Japanese Parkinson’s disease patients: using the odor stick identification test for Japanese subjects. Intern Med. 2008;47:1887–92.

Maremmani C, Rossi G, Tambasco N, et al. The validity and reliability of the Italian olfactory identification test (IOIT) in healthy subjects and in Parkinson’s disease patients. Parkinsonism Relat Disord. 2012;18:788–93.

Mariño-Sánchez F, Valls-Mateus M, Haag O, Alobid I, Busquet J, Mullol J. Smell loss is associated with severe and uncontrolled disease in children and adolescents with persisting allergic rhinitis. J Allergy Clin Immunol Pract. 2018.

Vilas D, Quintana M, Pont-Sunyer C, et al. Olfactory characterization of idiopathic Parkinson’s disease and LRRK2 associated parkinsonism: a practical approach (submitted).

Liu G, Zong G, Doty RL, Sun Q. Prevalence and risk factors of taste and smell impairment in a nationwide representative sample of the US population: a cross-sectional study. BMJ Open. 2016;6:e013246.

Gros A, Manera V, de March CA, et al. Olfactory disturbances in ageing with and without dementia: towards new diagnostic tools. J Laryngol Otol. 2017;131:572–9.

Murphy C, Gilmore MM, Seery CS, Salmon DP, Lasker BR. Olfactory thresholds are associated with degree of dementia in Alzheimer’s disease. Neurobiol Aging. 1990;11:465–9.

Devanand DP. Olfactory identification deficits, cognitive decline, and dementia in older adults. Am J Geriatr Psychiatry. 2016;24:1151–7.

Doty RL, Sharman P, Applebaum SL, Giberson R, Siksorski L, Rosenberg L. Smell identification ability: changes with age. Science. 1984;226:1441–3.

Choudhury ES, Moberg P, Doty RL. Influences of age and sex on a microencapsulated odor memory test. Chem Senses. 2003;28:799–805.

Oliveira-Pinto AV, Santos RM, Coutinho RA, et al. Sexual dimorphism in the human olfactory bulb: females have more neurons and glial cells than males. PLoS Ones. 2014;9:e111733.

Xydakis MS, Belluscio L. Detection of neurodegenerative disease using olfaction. Lancet Neurol. 2017;16:415–6.

Hummel T, Heilmann S, Murphy C. Age-related changes in chemosensory functions. In: Rouby C, et al., editors. Olfaction, taste and cognition. New York: Cambridge University Press; 2002. p. 451–6.

Murphy C, Nordin S, Acosta L. Odor learning, recall, and recognition memory in young and elderly adults. Neuropsychology. 1997;11:126–37.

Suzuki Y, Critchley HD, Suckling J, et al. Functional magnetic resonance imaging of odor identification: the effect of aging. J Gerontol A Biol Sci Med Sci. 2001;56:M756–60.

Cerf-Ducastel B, Murphy C. fMRI brain activation in response to odors is reduced in primary olfactory areas of elderly subjects. Brain Res. 2003;986:39–53.

Ferdon S, Murphy C. The cerebellum and olfaction in the aging brain: a functional magnetic resonance imaging study. Neuroimage. 2003;20:12–21.

Rawson NE. Olfactory loss in aging. Sci Aging Knowl Environ. 2006;5:pe6.

Doty RL. The olfactory system and its disorders. Semin Neurol. 2009;29:74–81.

Mobley AS, Rodriguez-Gil DJ, Imamura F, Greer CA. Aging in the olfactory system. Trends Neurosci. 2014;37:77–84.

Paik SI, Lehman MN, Seiden AM, Duncan HJ, Smith DV. Human olfactory biopsy. The influence of age and receptor distribution. Arch Otolaryngol Head Neck Surg. 1992;118:731–8.

Rosli Y, Brecjenridge LJ, Smith RA. An ultrastrucutral study of age-related changes in mouse olfactory epithelium. J Electron Microsc. 1999;48:77–84.

Ueha R, Schichino S, Ueha S, Kondo K, Kikuta S, Nishijima H, et al. Reduction of proliferating olfactory cells and low expression of extracellular matrix genes are hallmarks of the aged olfactory mucosa. Front Aging Neurosci. 2018;10:86.

Buschhüter D, Smitka M, Puschmann S, Gerber JC, Abolmaali ND, Hummel T. Correlation between olfactory bulb volume and olfactory function. Neuroimage. 2008;42:498–502.

Rombaux P, Duprez T, Hummel T. Olfactory bulb volume in the clinical assessment of olfactory dysfunction. Rhinology. 2009;47:3–9.

Rombaux P, Huart C, Deggouj N, Duprez T, Hummel T. Prognostic value of olfactory bulb volume measurement for recovery in postinfectious and posttraumatic olfactory loss. Otolaryngol Head Neck Surg. 2012;147:1136–41.

Paschen L, Schmidt N, Wolff S, Cnyrim C, van Eimeren T, Zeuner KE, et al. The olfactory bulb volume in patients with idiopathic Parkinson’s disease. Eur J Neurol. 2015;22:1068–73.

Mazal PP, Haehner A, Hummel T. Relation of the volume of the olfactory bulb to psychophysical measures of olfactory function. Eur Arch Otorhinolaryngol. 2016;273:1–7.

•• Marin C, Laxe S, Langdon C, Berenguer J, Lehrer E, Mariño-Sánchez F, et al. Olfactory function in an excitotoxic model for secondary neuronal degeneration: role of dopaminergic interneurons. Neuroscience. 2017;364:28–44. Preclinical evidence of the lack of correlation between olfactory dysfunction and recovery and the olfactory bulbs volume.

Segura B, Baggio HC, Sola E, Palacios EM, Vendrell P, Bargalló N, et al. Neuroanatomical correlates of olfactory loss in normal aged subjects. Behav Brain Res. 2013;246:148–53.

Adjei S, Houck AL, Ma K, Wesson DW. Age-dependent alterations in the number, volume, and localization of islands of Calleja within the olfactory tubercle. Neurobiol Aging. 2013;34:2676–82.

Wilson RS, Schneider JA, Arnold SE, Tang Y, Boyle PA, Benner DA. Olfactory identification and incidence of mild cognitive impairment in older age. Arch Gen Psychiatry. 2007;64:802–8.

Gopinath B, Sue CM, Kifley A, Mitchell P. The association between olfactory impairment and total mortality in older adults. J Gerontol A Biol Sci Med Sci. 2012;67:204–9.

Devanand DP, Lee S, Manly J, Andrews H, Schupf N, Masurkar A, et al. Olfactory identification deficits and increased mortality in the community. Ann Neurol. 2015;78:401–11.

Almkvist O, Berglund B, Nordin S. Odor detectability in successfully aged elderly and young adults. Reports from the Dept of Psychology, Stockholm University. 1992;744:1–12.

Mackay-Sim A, Johnston AN, Owen C, Burne TH. Olfactory ability in the healthy population: reassessing presbyosmia. Chem Senses. 2006;31:763–71.

Schubert CR, Carmichael LL, Murphy C, Klein BE, Kelin R, Cruickshanks KJ. Olfaction and the 5-year incidence of cognitive impairment in an epidemiological study of older adults. J Am Geriatr Soc. 2008;56:1517–21.

Kreisi WC, Jin P, Lee S, et al. Odor identification ability predicts PET amyloid status and memory decline in older adults. J Alzheimers Dis. 2018;62:1759–66.

Kovacs T. Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev. 2004;3:215–32.

Gerkin RC, Adler CH, Hentz JG, et al. Improved diagnosis of Parkinson’s disease from a detailed olfactory phenotype. Ann Clin Transl Neurol. 2017;4:714–21.

Godoy MD, Voegels RL, de Pinna F, Imamura R, Farfel JM. Olfaction in neurologic and neurodegenerative diseases: a literature review. Int Arch Otorhinolaryngol. 2015;19:176–9.

Hawkes C. Olfaction in neurodegenerative disorder. Adv Otorhinolaryngol. 2006;63:133–51.

Attems J, Walker K, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. 2014;127:459–75.

Driver-Dunckley E, Adler CH, Hentz JG, Dugger BN, Shill HA, Caviness JN, et al. Olfactory dysfunction in incidental Lewy body disease and Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:1260–2.

Velayudhan L. Smell identfication function and Alzheimer’s disease: a selective review. Curr Opin Psychiatry. 2015;28:173–9.

Huang SF, Chen K, Wu JJ, et al. Odor identification test in idiopathic REM-behavior disorder and Parkinson’s disease in China. PLoS One. 2016;11:e0160199.

Adler CH. Premotor symptoms and early diagnosis of Parkinson’s disease. Int J Neurosci. 2011;121(Suppl 2):3–8.

Hüttenbrink KB, Hummel T, Berg D, Gasser T, Hähner A. Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. Dtsch Arztebl Int. 2013;110:1–7.

Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

Braak H, Del Tredici K, Rub U, de Vos RA, Jansen EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

Doty RL. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol. 2008;63:7–15.

Hobson DE. Asymmetry in parkinsonism, spreading pathogens and the nose. Parkinsonism Relat Disord. 2012;18:1–9.

Adler CH, Connor DJ, Hentz JG, Sabbagh MN, Caviness JN, Shill HA, et al. Incidental Lewy body disease: clinical comparison to a control cohort. Mov Disord. 2010;25:642–6.

Beach TG, Adler C, Lue L, et al. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol. 2009;117:613–34.

Jellinger KA. Lewy body-related alpha-synucleopathy in the aged human brain. J Neural Transm. 2004;111:1219–35.

Saito Y, Ruberu NN, Sawabe M, Arai T, Kazam H, Hosoi T, et al. Lewy body-related alpha-synucleinopathy in aging. J Neuropathol Exp Neurol. 2004;63:742–9.

Ross GW, Abbott RD, Petrovitch H, et al. Association of olfactory dysfunction with incidental Lewy bodies. Mov Disord. 2006;12:2062–7.

Iranzo A, Molinuevo JL, Santamaria J, et al. Rapid-eye-movement sleep behavior disorder as an early marker for a neurodegenerative disorder: a description study. Lancet. 2006;5:572–7.

Iranzo A, Tolosa E, Gelpi E, et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye movement sleep behavior disorder: and observational cohort study. Lancet Neurol. 2013;12:443–53.

Postuma RB, Gagnon JF, Vendette M, Desjardins C, Montplaisir JY. Olfaction and color vision identify impending neurodegeneration in rapid eye movement sleep behavior disorder. Ann Neurol. 2011;69:811–8.

Park JW, Kwon DY, Choi JH, Park MH, Yoon HK. Olfactory dysfunctions in drug-naïve Parkinson’s disease with mild cognitive impairment. Parkinsonism Relat Disord. 2018;46:69–73.

Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson’s disease. Nat Rev Neurosci. 2017;18:435–50.

Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.

Poewe W. Non-motor symptoms in Parkinson’s disease. Eur J Neurol. 2008;15(Suppl 1):14–20.

Schapira AH, Tolosa E. Molecular and clinical prodrome of Parkinson’s disease: implications for treatment. Nat Rev Neurol. 2010;6:309–17.

Haehner A, Boesveldt S, Berendse HW, et al. Prevalence of smell loss in Parkinson’s disease—a multicenter study. Park Relat Disord. 2009;15:490–4.

Silveira-Moriyama L, Guedes LC, Kngsbury A, Ayling H, Shaw K, et al. Hyposmia in G2019S LRRK2-related parkinsonism: clinical and pathologic data. Neurology. 2008;71:1021–6.

Saunders-Pullman R, Stanley K, Wang C, et al. Olfactory dysfunction in LRRK2 G2019S mutation carriers. Neurology. 2011;77:319–24.

Vilas D, Ispierto L, Alvarez R, et al. Clinical and imaging markers in premotor LRRK2 G2019S mutation carriers. Parkinsonism Relat Disord. 2015;21:1170–6.

Ponsen MM, Stiffers D, Booij J, Van Eck-Smit BLF, Wolters EC, Berendse HW. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol. 2004;56:173–81.

Hawkes CH, Shephard BC, Daniel SE. Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62:436–46.

Haugen J, Müller ML, Kotagal V, Albin RL, Koeppe RA, Scott PJ, et al. Prevalence of impaired odor identification in Parkinson disease with imaging evidence of nigrostriatal denervation. J Neural Transm. 2016;123:421–4.

Morley JF, Duda JE. Use of hyposmia and other non-motor symptoms to distinguish between drug-induced parkinsonism and Parkinson’s disease. J Parkinson Dis. 2014;4:169–73.

Mesholam RI, Moberg PJ, Mahr RN, Doty RL. Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s disease. Arch Neurol. 1998;55:84–90.

Rahayel S, Frasnelli J, Joubert S. The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: a meta-analysis. Behav Brain Res. 2012;231:60–74.

Hawkes CH, Shephard BC. Selective anosmia in Parkinson’s disease? Lancet. 1993;341:435–6.

Haehner A, Maboshe W, Baptista RB, Storch A, Reichmann H, Hummel T. Selective hyposmia in Parkinson’s disease? J Neurol. 2013;260:3158–60.

Chen H, Huang X, Guo X, et al. Smoking duration, intensity, and risk of Parkinson’s disease. Neurology. 2010;74:878–84.

Thacker EL, O’Reilly EJ, Weisskopf MG, et al. Temporal relationship between cigarette smoking and risk of Parkinson’s disease. Neurology. 2007;68:764–8.

Sharer JD, Leon-Sarmietno FE, Morley JF, Weintraub D, Doty RL. Olfactory dysfunction in Parkinson’s disease: positive effect of cigarette smoking. Mov Disord. 2015;30:859–62.

Lucassen EB, Sterling NW, Lee EY, Cehn H, Lewis MM, Kong L, et al. History of smoking and olfaction in Parkinson’s disease. Mov Disord. 2014;29:1069–74.

Witt M, Bormann K, Gudziol V, et al. Biopsies of olfactory epithelium in patients with Parkinson’s disease. Mov Disord. 2009;24:906–14.

Hummel T, Witt M, Reichmnn H, Welge-Luessen A, Haehner A. Immunohistochemical, volumetric, and functional neuroimaging studies in patients with idiopathic Parkinson’s disease. J Neurol Sci. 2010;289:119–22.

Schneider SA, Boettner M, Alexoudi A, Zorenkov D, Deuschl G, Wedel T. Can we use peripheral tissue biopsies to diagnose Parkinson’s disease? A review of the literature. Eur J Neurol. 2016;23:247–61.

Brodoehl S, Klingner C, Volk GF, Bitter T, Witte OW, Redecker C. Decreased olfactory bulb volume in idiopathic Parkinson’s disease detected by 3.0-Tesla magnetic resonance imaging. Mov Disord. 2012;27:1019–25.

Chen S, Tan HY, Wu ZH, Sun CP, He JX, Li XC, et al. Imaging of olfactory bulb and gray matter volumes in brain areas associated with olfactory function in patients with Parkinson’s disease and multiple system atrophy. Eur J Radiol. 2014;83:564–70.

Li J, Gu CZ, Su JB, Zhu LH, Zhou Y, Huang HY, et al. Changes in olfactory bulb volume in Parkinson’s disease: a systematic review and meta-analysis. PLoS One. 2016;11:e0149286.

Tanik N, Serin HI, Celikbilek A, Inan LE, Gundogdu F. Associations of olfactory bulb and depth of olfactory sulcus with basal ganglia and hippocampus in patients with Parkinson’s disease. Neurosci Lett. 2016;620:111–4.

Sengoku R, Matsushima S, Bono K, et al. Olfactory function combined with morphology distinguishes Parkinson’s disease. Parkinsonism Relat Disord. 2015;21:771–7.

Mueller A, Abolmaali ND, Hakimi AR, Gloeckler T, Herting B, Reichmann H, et al. Olfactory bulb volumes in patients with idiopathic Parkinson’s disease a pilot study. J Neural Transm. 2005;112:1363–70.

Hakyemez HA, Veyseller B, Ozer F, Pzben S, Bayraktar GI, Gurbuz D, et al. Relationship of olfactory function with olfactory bulbs volume, disease duration and Unified Parkinson’s disease rating scale scores in patients with early stage of idiopathic Parkinson’s disease. J Clin Neurosci. 2013;20:1469–70.

Altinayar S, Oner S, Can S, Kizilay A, Kamisili S, Sarac K. Olfactory dysfunction and its relation olfactory bulb volume in Parkinson’s disease. Eur Rev Med Pharmacol Sci. 2014;18:3659–64.

Scherfler C, Schocke MF, Seppi K, Esterhammer R, Brenneis C, Jaschke W, et al. Voxel-wise analysis of diffusion weighted imaging reveals disruption of the olfactory tract in Parkinson’s disease. Brain. 2006;129:538–42.

Ibarretxe-Bilbao N, Junque C, Marti MJ, Valldeoriola F, Vendrell P, Bargallo N, et al. Olfactory impairment in Parkinson’s disease and white matter abnormalities in central olfactory areas: a voxel-based diffusion tensor imaging study. Mov Disord. 2010;25:1888–94.

Iannilli E, Stephan L, Hummel T, Reichmann H, Haehner A. Olfactory impairment in Parkinson’s disease is a consequence of central nervous system decline. J Neurol. 2017;264:1236–46.

Westermann B, Wattendorf E, Schwedtfeger U, et al. Functional imaging of the cerebral olfactory system in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2008;79:19–24.

Su M, Wang S, Fang W, Zhu Y, Li R, Sheng K, et al. Alterations in the limbic/paralimbic cirtices of Parkinson’s disease patients with hyposmia under resting-state functional MRI by regional homogeneity and functional connectivity analysis. Parkinsonism Relat Disord. 2015;21:698–703.

Tolosa E, Gaig C, Santamaria J, Compta Y. Diagnosis and the premotor phase of Parkinson disease. Neurology. 2009;72(Suppl):S12–20.

Reichmann H. Premotor diagnosis of Parkinson’s disease. Neurosci Bull. 2017;33:526–34.

Ross GW, Petrovich H, Abbot RD, et al. Association of olfactory dysfunction with risk for future Parkinsons’ disease. Ann Neurol. 2008;63:167–73.

Berendse HW, Booij J, Francot CM, Bergmans PL, Hijman R, Stoof JC, et al. Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann Neurol. 2001;50:34–41.

Pont-Sunyer C, Hotter A, Haig C, et al. The onset of nomotor symptoms in Parkinson’s disease (the ONSET PD study). Mov Disord. 2015;30:229–37.

Haehner A, Hummel T, Hummel C, Sommer U, Junghanns S, Reichmann H. Olfactory loss may be a first sign of idiopathic Parkinson’s disease. Mov Disord. 2007;22:839–42.

Dickson DW, Fujishiro H, DellDonne A, et al. Evidence that incidental Lewy body disease is pre-symptomatic Parkinson’s disease. Acta Neuropathol. 2008;115:437–44.

Haehner A, Schöpf V, Loureiro A, Linn J, Reichmann H, Hummel T, et al. Susbtantia nigra fractional anisotropy changes confirm the PD at-risk status of paitients with idiopathic smell loss. Parkinsonism Relat Disord. 2018;50:113–6.

Berendse HW, Ponsen MM. Diagnosing premotor Parkinson’s disease using a two-step approach combining olfactory testing and DAT SPECT imaging. Parkinsonism Relat Disord. 2009;15(Suppl 3):S26–30.

Ponsen MM, Stoffers D, Wolters EC, Booij J, Berendse HW. Olfactory testing combined with dopamine transporter imaging as a method to detect prodromal Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81:396–9.

Sierra M, Sánchez-Juan P, Martínez-Rodríguez MI, et al. Olfaction and imaging biomarkers in premotor LRRK2 G2019S-associated Parkinson disease. Neurology. 2013;80:621–6.

Jennings D, Siderowf A, Stern M, Seibyil J, Eberly S, Oakes D, et al. Conversion to Parkinson Disease in the PARS hyposmic and dopamine transporter-deficit prodromal cohort. JAMA Neurol. 2017;74:933–40.

Doty RL, Stern MB, Pfeiffer C, Gollomp SM, Hurtig HI. Bilateral olfactory dysfunction in early stage treated and untreated idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1992;55:138–42.

Herting B, Schulze S, Reichmann H, Haehner A, Hummel T. A longitudinal study of olfactory function in patients with idiopathic Parkinson’s disease. J Neurol. 2008;255:367–70.

Cavaco S, Gonçalves A, Mendes A, et al. Abnormal olfaction in Parkinson’s disease is related to faster disease progression. Behav Neurol. 2015: 976589.

Tissingh G, Berendse HW, Bergmans P, DeWaard R, Drukarch B, Stoof JC, et al. Loss of olfaction in de novo and treated Parkinson’s disease: possible implications for early diagnosis. Mov Disord. 2001;16:41–6.

Boesveldt S, Verbaan D, Knol DL, Visser M, van Rooden SM, van Hilten JJ, et al. A comparative study of odor identification and odor discrimination deficits in Parkinson’s disease. Mov Disord. 2008;23:1984–90.

Siderowf A, Newberg A, Chou KL, et al. [99mTc]TRODAT-1-SPECT imaging correlates with odor identification in early Parkinson disease. Neurology. 2005;64:1716–20.

Lee EY, Eslinger PJ, Du G, Kong L, Lewis MM, Huang X. Olfactory-related cortical atrophy is associated with olfactory dysfunction in Parkinson’s disease. Mov Disord. 2014;29:1205–8.

Fullard ME, Tran B, Xie SX, et al. Olfactory impairment predicts cognitive decline in early Parkinson’s disease. Parkinsonism Relat Disord. 2016;25:45–51.

Kang SH, Lee HM, Seo WK, Kim JH, Koh SB. The combined effect of REM sleep behavior disorder and hyposmia on cognition and motor phenotype in Parkinson’s disease. J Neurol Sci. 2016;368:374–8.

Domellöf ME, Lundin KF, Edström M, Forsgren L. Olfactory dysfunction and dementia in newly diagnosed patients with Parkinson’s disease. Parkinsonism Relat Disord. 2017;38:41–7.

Stephenson R, Houghton D, Sundarararjan S, Doty RL, Stern M, Xie SX, et al. Odor identification deficits are associated with increased risk of neuropsychiatric complications in patients with Parkinson’s disease. Mov Disord. 2010;25:2099–104.

Baba T, Kikuchi A, Hirayama K, et al. Severe olfactory dysfunction is a prodromal symptom or dementia associated with Parkinson’s disease: a 3 years longitudinal study. Brain. 2012;135:161–9.

Alves J, Petrsyan A, Magalhaes R. Olfactory dysfunction in dementia. World J Clin Cases. 2014;2:661–7.

Bibi M, Mollenhauer B, Esselmann H, et al. CSF amyloid-beta-peptides in Alzheimer’s disease dementia, dementia with Lewy bodies and Parkinson’s disease dementia. Brain. 2006;129:1177–87.

Compta Y, Santamaría J, Ratti L, Tolosa E, Iranzo A, Muñoz E, et al. Cerebrospinal hypocretin, daytime sleepiness and sleep architecture in Parkinson’s dementia. Brain. 2009;132:3308–17.

Siderowf A, Xie SX, Hurtig H, et al. CSF amyloid (beta) 1-42 predicts cognitive decline in Parkinson’s disease. Neurology. 2010;75:1055–61.

Parnetti L, Farotti L, Eusebi P, et al. Differential role of CSF alpha-synuclein species, tau, and Aβ42 in Parkinson’s disease. Front Aging Neurosci. 2014;6:53.

Goldstein DS, Holmes C, Bentho O, et al. Biomarkers to detect central dopamine deficiency and distinguish Parkinson disease from multiple atrophy. Parkinsonism Relat Disord. 2008;14:600–7.

Silveira-Moriyama L, Hughes G, Church A, et al. Hyposmia in progressive supranuclear palsy. Mov Disord. 2010;25:570–7.

Suzuki M, Hashimoto M, Yoshioka M, Murakami M, Kawasaki K, Urashima M. The odor stick identification test for Japanese differentiates Parkinson’s disease form multiple system atrophy and progressive supranuclear palsy. BMC Neurol. 2011;11:157.

Glass PG, Lees AJ, Mathias C, et al. Olfaction in pathologically proven patients with multiple system atrophy. Mov Disord. 2012;27:327–8.

Wenning GK, Shephard B, hawkes C, Petruckevitch A, Lees A, Quinn N. Olfactory function in atypical parkinsonian syndromes. Acta Neurol Scand. 1995;81:247–50.

Müller A, Müngersdorf M, Reichmann H, Strehle G, Hummel T. Olfactory function in parkinsonian syndromes. J Clin Neurosci. 2002;9:521–4.

Brigo F, Erro R, Marangi A, Bhatia K, Tinazzi M. Differentiating drug-induced parkinsonism from Parkinson’s disease: an update on non-motor symptoms and investigations. Parkinsonism Relat Disord. 2014;20:808–14.

Katzenschlager R, Lees AJ. Olfaction and Parkinson’s syndromes: its role in differential diagnosis. Curr opin Neurol. 2004;17:417–23.

Kertelge L, Brüggemann N, Schmidt A, et al. Impaired sense of smell and color discrimination in monogenic and idiopathic Parkinson’s disease. Mov Disord. 2010;25:2665–9.

Paisán-Ruiz C, Lewis PA, Singleton AB. LRRK2: cause, risk, and mechanism. J Parkinson Dis. 2013;3:85–103.

Silveira-Moriyama L, Munhoz RP, de J Carvalho M, et al. Olfactory heterogeneity in LRRK2 related parkinsonism. Mov Disord. 2010;25:2879–83.

Bardien S, Lesage S, Brice A, Carr J. Genetic characteristic of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson’s disease. Parkinsonism Relat Disord. 2011;17:501–8.

Gaig C, Vilas D, Infante J, Sierra M, et al. Non-motor symptoms in LRRK2 G2019S associated Parkinson’s disease. PLoS One. 2014;9:e108982.

Johansen KK, Waro BJ, Aasly JO. Olfactory dysfunction in sporadic Parkinson’s disease and LRRK2 carriers. Acta Neurol Scand. 2014;129:300–6.

Saunders-Pullman R, Mirelman A, Wang C, et al. Olfactory identification in LRRK2 G2019S mutation carriers: a relevant marker? Ann Clin Transl Neurol. 2014;1:670–8.

Pont-Sunyer C, Tolosa E, Caspell-Garcia C, et al. The prodromal phase of leucine-rich repeat kinase 2-associated Parkinson’s disease: clinical and imaging studies. Mov Disord. 2017;32:726–38.

Mirelman A, Heman T, Yasinovsky K, et al. Fall risk and gait in Parkinson’s disease: the role of the LRRK2 G2019S mutation. Mov Disord. 2013;28:1683–90.

Poulopulos M, Levy OA, Alcalay RN. The neuropathology of genetic Parkinson’s disease. Mov Disord. 2012;27:831–42.

Kalia LV, Lang AE, Hazrati LN, et al. Clinical correlations with Lewy body pathology in LRRK2-related Parkinson’s disease. JAMA Neurol. 2015;72:100–5.

Sierra M, Martínez-Rodríguez I, Sánchez-Juan P, et al. Prospective clinical and DaT-SPECT imaging in premotor LRRK2 G2019S-associated Parkinson disease. Neurology. 2017;89:439–44.

Bostantjopoulou S, Katsarou Z, Papadimitriou A, Veletza V, Hatzigeorgiou G, Lees A. Clinical features of parkinsonian patients with the alpha-synuclein (G209A) mutation. Mov Disord. 2001;16:1007–13.

Tijero B, Gomez-Esteban JC, Llorens V, et al. Cardiac sympathetic denervation precedes nigrostriatal loss in the E46K mutation of the alpha-synuclein gene (SNCA). Clin Auton Res. 2010;20:267–9.

Papadimitriou D, Antonelou R, Miligkos M, et al. Motor and non-motor features of carriers of the p.A53T alpha-synuclein mutation: A longitudinal study. Mov Disord. 2016;31:1226–30.

Alcalay RN, Siderowf A, Ottman R, et al. Olfaction in Parkin heterozygotes and compound heterozygotes: the CORE-PD study. Neurology. 2011;76:319–26.

Malek N, Swallow DM, Grosset KA, et al. Olfaction in Parkin single and compound heterozygotes in a cohort of young onset Parkinson’s disease patients. Acta Neurol Scand. 2016;134:271–6.

Ferraris A, Ialongo T, Passali GC, et al. Olfactory dysfunction in Parkinsonism caused by PINK1 mutations. Mov Disord. 2009;24:2350–7.

Saunders-Pullman R, Hagenah J, Dhawan V, et al. Gaucher disease ascertained through a Parkinson’s center: imaging and clinical characterization. Mov Disord. 2010;25:1364–72.

McNeill A, Duran R, Proukakis C, et al. Hyposmia and cognitive impairment in Gaucher disease patients and carriers. Mov Disord. 2012;27:526–32.

Beavan M, McNeill A, Proukakis CH, et al. Evolution of prodromal clinical markers of Parkinson disease in a glucocerebrosidase mutation positive cohort. JAMA Neurol. 2015;72:201–8.

Del Tredici K, Rüb U, De Vos RA, Bohl JR, Braak H. Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol. 2002;61:413–26.

Silveira-Moriyama L, Holton JL, Kngsbury A, Ayling H, Petrie A, Sterlacci W, et al. Regional differences in the severity of Lewy body pathology across the olfactory cortex. Neurosci Lett. 2009;453:77–80.

•• Rey NL, Steiner JA, Maroof N, Luk KC, Madaj Z, Trojanowski JQ, et al. Widespread transneuronal propagation of α-synucleopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J Exp Med. 2016;213:1759–78. Preclinical evidence that α-synuclein fibrils injected at the olfactory bulb level induces olfactory deficits and spread to multiple brain regions, being the first evidence of a transneuronal, progressive propagation of Parkinson’s diasease (PD)-like α-synuclein pathology.

Mason DM, Nouraei N, Pant DB, Miner KM, Hutchinson DF, Luk KC, et al. Transmission of α-synucleinopathy from olfactory structures deep into the temporal lobe. Mol Neurodegener. 2016;11:49.

Duda JE, Shah E, Arnold SE, Lee VM, Tojanowski JQ. The expression of alpha-, beta-, and gamma-synucleins in olfactory mucosa from patients with and without neurodegenerative disease. Exp Neurol. 1999;160:515–22.

Ferrer I, López-González I, Carmona M, Dalfó E, Pujol A, Martínez A. Neurochemistry and the non-motor aspects of PD. Neurobiol Dis. 2012;46:508–26.

Huisman E, Uylings HB, Hoogland PV. A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinsons’s disease. Mov Disord. 2004;19:687–92.

Huisman E, Uylings HB, Hoogland PV. Gender-related changes in increase of dopaminergic neurons in the olfactory bulb of Parkinson’s disease patients. Mov Disord. 2008;23:1407–13.

Mundiñano LC, Caballero MC, Ordóñez C, et al. Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol. 2011;122:61–74.

Hubbard PS, Esiri MM, Reading M, MCShane R, Nagy Z. Alpha-synuclein pathology in the olfactory pathways of dementia patients. J Anat. 2007;211:117–24.

Ubeda-Bañón I, Flores-Cuadrado A, Saiz-Sanchez D, Martinez-Marcos A. Differential effects of Parkinson’s disease on interneuron subtypes within the human anterior olfactory nucleus. Front Neuroanat. 2017;11:113.

Harding AJ, Stimson E, Henderson JM, Halliday GM. Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain. 2002;125:2431–45.

Wattendorf E, Welge-Lüssen A, Fiedler K, Bilecen D, Wolfensberger M, Fuhr P, et al. Olfactory impairment predicts brain atrophy in Parkinson’s disease. J Neurosci. 2009;29:15410–3.

Tsuboi Y, Wszolek ZK, Graff-Radford NR, Cookson N, Dickson DW. Tau pathology in the olfactory bulb correlates with Braak stage, Lewy body pathology and apolipoprotein epsilon4. Neuropathol Appl Neurobiol. 2003;29:503–10.

Müller ML, Bohnen NI. Cholinergic dysfunctionin Parkinson’s disease. Curr Neurol Neurosci Rep. 2013;13:377.

Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, et al. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acada Sci USA. 1993;90:8861–5.

Gutierrez-Mecinas M, Crespo C, Blasco-Ibáñez JM, et al. Distribution of D2 dopamine receptor in the olfactory glomeruli of the rat olfactory bulb. Eur J Neurosci. 2005;22:1357–67.

Doty RL, Risser JM. Influence of the D-2 dopamine receptor agonist quinpirole on the odor detection performance of rats before and after spiperone administration. Psychopharmacology. 1989;98:310–5.

Escanilla O, Yuhas C, Marzan D, Linster C. Dopaminergic modulation of olfactory bulb processing affects odor discrimination learning in rats. Behav Neurosci. 2009;123:828–33.

Wei CJ, Linster C, Cleland TA. Dopamine D2 receptor activation modulates perceived odor intensity. Behav Neurosci. 2006;120:393–400.

Bastien-Dionne PO, David LS, Parent A, Saghatelyan A. Role of sensory activity on chemospecific populations of interneurons in the adult olfactory bulb. J Comp Neurol. 2010;518:1847–61.

Sawada M, Kaneko N, Inada H, Wake H, Kato Y, Yanagawa Y, et al. Sensory input regulates spatial and subtype-specific patterns of neuronal turnover in the adult olfactory bulb. J Neurosci. 2011;31:11587–96.

Motles E, Tetas M, Gomez A. Behavioral effects evoked by SKF38393 and LY171555 in adult cats. Physiol Behav. 1995;57:983–8.

Deeb J, Shah M, Muhammed N, Gunasekera R, Gannon K, Findley LJ, et al. A basic smell test is as sensitive as a dopamine transporter scan: comparison of olfaction, taste and DaTSCAN in the diagnosis of Parkinson’s disease. QJM. 2010;103:941–52.

Bohnen NI, Gedela S, Kuwabara H, Constantine GM, Mathis CA, Studenski SA, et al. Selective hyposmia and nigrostriatal dopaminergic denervation in Parkinson’s disease. J Neurol. 2007;254:84–90.

Winner B, Desplats P, Hagl C, et al. Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp Neurol. 2009;219:543–52.

Zaborsky L, Carlsen J, Brashear HR, Heimer L. Cholinergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J Comp Neurol. 1986;243:488–509.

D’Souza RD, Vijayaraghavan S. Nicotinic receptor-mediated filtering of mitral cell responses to olfactory nerve inputs involves the a3b4 subtype. J Neurosci. 2012;32:3261–6.

D’Souza RD, Parsa PC, Vijayaraghavan S. Nicotinic receptors modulate olfactory bulb external tufted cells via an excitation-dependent inhibitory mechanism. J Neurophsyiol. 2013;110:1544–53.

Li G, Linster C, Cleland TA. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells. J Neurophsyiol. 2015;114:3177–200.

Doty RL, Bagla R, Kim N. Physostigmine enhances performance on an odor mixture discrimination test. Physiol Behav. 1999;65:801–4.

Chaudhury D, Escanilla O, Linster C. Bulbar acetylcholine enhances neural perceptual odor discrimination. J Neurosci. 2009;29:52–60.

Mandairon N, Peace ST, Boudadi K, Boxhorn CE, Narla VA, Suffis SD, et al. Compensatory responses to age-related decline in odor quality acuity: cholinergic neuromodulation and olfactory enrichment. Neurobiol Aging. 2011;32:2254–65.

Devore S, Manella LC, Linster C. Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short-term memory task. Front Behav Neurosci. 2012;6:59.

Oh E, Park J, Youn J, Kim JS, Park S, Jang W. Olfactory dysfunction in early Parkinson’s disease is associated with short latency afferent inhibition reflecting central cholinergic dysfunction. Clin Neurophysiol. 2017;128:1061–8.

Versace V, Langthaler PB, Sebastianelli L, Höller Y, Brigo D, Orioli A, et al. Impaired cholinergic transmission in patients with Parkinson’s disease and olfactory dysfunction. J Neurol Sci. 2017;377:55–61.

Smith RS, Hu R, DeSouza A, Eberly CL, Krahe K, Chan W, et al. Differential muscarinic modulation in the olfactory bulb. J Neurosci. 2015;35:10773–85.

McLean JH, Shipley MT. Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat. J Neurosci. 1987;7:3016–28.

Brill J, Shao Z, Puche AC, Wachowiak M, Shipley MT. Serotonin increases synaptic activity in olfactory bulb glomeruli. J Neurophysiol. 2016;115:1208–19.

Qamhawi Z, Towey D, Shah B, et al. Clinical correlates of raphe serotonergic dysfunction in early Parkinson’s disease. Brain. 2015;138:2964–73.

Vermeiren Y, Janssens J, Van Dam D, De Deyn PP. Serotonergic dysfunction in amyotrophic lateral sclerosis and Parkinson’s disease: similar mechanisms, dissimilar outcomes. Front Neurosci. 2018;12:185.

Kovacs CG, Klöppel S, Fischer I, Domer S, Lindeck-Pozza E, Birner P, et al. Nucleus-specific alteration of raphe neurons in human neurodegenerative disorders. Neuroreport. 2003;14:73–6.

McKeith IG, Dickson DW, Lwe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65:1863–72.

Gilbert PE, Barr PJ, Murphy C. Differences in olfactory and visual memory in patients with pathologically confirmed Alzheimer’s disease and the Lewy body variant of Alzheimer’s disease. J Int Neurospychol Soc. 2004;10:835–42.

Funabe S, Takao M, Saito Y, et al. Neuropathologic analysis of Lewy-related α-synucleinopathy in olfactory mucosa. Neuropathology. 2013;33:47–58.

Hepp DH, Vergoossen DL, Huisman E, et al. Distribution and load of amyloid-b pathology in Parkinson disease and dementia with Lewy bodies. J Neuropathol Exp Neurol. 2016;75:936–45.

McKhann GM, Knopman DS, Cheretkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

Zou YM, Lu D, Liu LP, Zhang HH, Zhou YY. Olfactory dysfunction in Alzheimer’s disease. Neuropsychiatry Dis Treat. 2016;12:869–75.

Sun GH, Raji CA, Maceachern P, Burke JF. Olfactory identification testing as a predictor of the development of Alzheimer’s dementia: a systematic review. Laryngoscope. 2012;122:1455–62.

Bahar-Fuchs A, Chételat G, Villemagner VL, Moss S, Pike K, Masters CL, et al. Olfactory deficits and amyloid-β burden in Alzheimer’s disease, mild cognitive impairment, and healthy aging: a PIB PET study. J Alzheimers Dis. 2010;22:1081–7.

Kim JY, Rasheed A, Yoo SJ, Kim SY, Cho B, Son G, et al. Distinct amyloid precursor protein processing machineries of the olfactory system. Biochem Biophys Res Commun. 2018;495:533–8.

Serby M, Larson P, Kalkstein D. The nature and course of olfactory deficits in Alzheimer’s disease. Am J Psychiatry. 1991;148:357–60.

Velayudhan L, Pritchard M, Powell JF, Proitsi P, Lovestone S. Smell identification function as a severity and progression marker in Alzheimer’s disease. Int Psychogeriatr. 2013;25:1157–66.

Djordjevic J, Jones-Gotman M, De Sousa K, Chertkow H. Olfaction in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2008;29:693–706.

Wilson RS, Arnold SE, Schneider JA, Boyle PA, Buchman AS, Bennett DA. Olfactory impairment in presymptomatic Alzheimer’s disease. Ann NY Acad Sci. 2009;1170:730–5.

Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K, et al. Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry. 2000;157:1399–405.

Bahar-Fuchs A, Moss S, Rowe C, Savage G. Awareness of olfactory deficits in healthy aging, amnestic mild cognitive impairment and Alzheimer’s disease. Int Psychogeriatr. 2011;23:1097–106.

Devanand DP, Lee S, Manly J, et al. Olfactory deficits predict cognitive decline and Alzheimer dementia in an urban community. Neurology. 2015;84:182–9.

Doty RL, Reyes PF, Gregor T. Presence of both odor identification and detection deficits in Alzheimer’s disease. Brain Res Bull. 1987;18:597–600.

Conti MZ, Vicini-Chilovi B, Riva M, Zanetti M, Liberini P, Padovani A, et al. Odor identification deficit predicts clinical conversion from mild cognitive impairment to dementia due to Alzheimer’s disease. Arch Clin Neuropsychol. 2013;28:391–9.

Devanand DP, Liu X, Tabert MH, et al. Combining early markers strongly conversion from mild cognitive impairment to Alzheimer’s disease. Biol Psychiatr. 2008;64:871–9.

Murphy C, Jernigan TL, Fennema-Notestine C. Left hippocampal volume loss in Alzheimer’s disease is reflected in performance on odor identification: a structural MRI study. J Int Neuropsychol Soc. 2003;9:459–71.

Wang J, Eslinger PJ, Doty RL, et al. Olfactory deficit detected by fMRI in early Alzheimer’s disease. Brain Res. 2010;1357:184–94.

Kovacs T, Cairns NJ, Lantos PL. Beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol. 1999;25:481–91.

Wesson DW, Levy E, Nixon RA, Wilson DA. Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer’s disease mouse model. J Neurosci. 2010;30:505–14.

Xu W, Fitzgerald S, Nixon RA, Levy E, Wilson DA. Early hyperactivity in lateral entorhinal cortex is associated with elevated levels of AβPP metabolites in the Tg2576 mouse model of Alzheimer’s disease. Exp Neurol. 2015;264:82–91.

Hu B, Geng C, Hou XY. Oligomeric amyloid-b peptide disrupts olfactory information output by impairment of local inhibitory circuits in rat olfactory bulb. Neurobiol Aging. 2017;51:113–21.

•• Risacher SL, Tallman EF, West JD, et al. Olfactory identification in subjective cognitive decline and mild cognitive impairment: association with tau but not amyloid positron emission tomography. Alzheimers Dement. 2017;9:57–66. Using amyloid positron emission tomography, magnetic resonance and UPSIT test, the present report demonstrates that olfactory deficit may be a good marker for tau and neurodegeneration in preclinical or prodromal Alzheimer’s disease.

Attems J, Jellinger KA. Olfactory tau pathology in Alzheimer disease and mild cognitive impairment. Clin Neuropathol. 2006;25:265–71.

Goedert M. The ordered assembly of tau is the gain-of-toxic function that causes human tauopathies. Alzheimers Dement. 2016;12:1040–50.

Oleson S, Murphy C. Olfactory dysfunction in ApoE E4/4 homozygotes with Alzheimer’s disease. J Alzheimers Dis. 2015;46:791–803.

Juottonen K, Lehtovirta M, Helisalmi S, Riekkinen PJ Sr, Soininen H. Major decrease in the volume of the entorhinal cortex in patients with Alzheimer’s disease carrying the apolipoprotein E epsilon 4 allele. J Neurol Neurosurg Psychiatry. 1998;65:322–7.

Olofsson JK, Rönnlund M, Nordin S, Nyberg L, Nilsson LG, Larsson M. Odor identification deficit as a predictor of five-year global cognitive change: interactive effects with age and ApoE-epsilon4. Behav Genet. 2009;39:496–503.

Devanand DP, Tabert MH, Cuasay K, et al. Olfactory identification deficits and MCI in a multi-ethnic elderly community sample. Neurobiol Aging. 2010;31:1593–600.

Lehéricy S, Hirsch EC, Cervera-Piérot P, et al. Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer’s disease. J Comp Neurol. 1993;330:15–31.

Tiraboschi P, Hansen LA, Alford M, Merdes A, Masliah E, Thal LJ, et al. Early and widespread cholinergic losses differentiate dementia with Lewy bodies from Alzheimer disease. Arch Gen Psychiatry. 2002;59:946951.

Ahlskog JE, Waring SC, Petersen RC, et al. Olfactory dysfunction in Guamanian ALS, parkinsonism, and dementia. Neurology. 1998;51:1672–7.

Günther R, Schrempf W, Häher A, Hummel T, Wolz M, Storch A, et al. Impairment in respiratory function contributes to olfactory impairment in amyotrophic lateral sclerosis. Front Neurosci. 2018;9:79.

Hawkes CH, Shepard BC, Geddes JF, Body GD, Martin JE. Olfactory disorder in motor neuron disease. Exp Neurol. 1998;150:248–53.

Pilotto A, Rossi F, Rinaldi F, et al. Exploring olfactory function and its relation with behavioural and cognitive impairment in amyotrophic lateral sclerosis patients: a cross-sectional study. Neurodegener Dis. 2016;16:411–6.

Eisen A, Braak H, Tredici KD, Lemon R, Ludolph AC, Kiernan MC. Cortical influences drive amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2017;88:917–24.