Old and new parameter choice rules for discrete ill-posed problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bakushinskii, A.B.: Remarks on choosing a regularization parameter using quasi-optimality and ratio criterion. USSR Comp. Math. Math. Phys. 24(4), 181–182 (1984)
Bauer, F., Kindermann, S.: Recent results on the quasi-optimality principle. J. Inverse Ill-Posed Probl. 17, 5–18 (2009)
Bauer, F., Lukas, M.A.: Comparing parameter choice methods for regularization of ill-posed problem. Math. Comput. Simul. 81, 1795–1841 (2011)
Bauer, F., Reiß, M.: Regularization independent of the noise-level: an analysis of quasi-optimality. Inverse Probl. 24, 055009 (16 pp) (2008)
Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear systems with applications to regularization. Numer. Algorithms 49, 85–104 (2008)
Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for the regularization of least squares problems. Numer. Algorithms 51, 61–76 (2009)
Calvetti, D., Golub, G.H., Reichel, L.: Estimation of the L-curve via Lanczos bidiagonalization. BIT 39, 603–619 (1999)
Calvetti, D., Hansen, P.C., Reichel, L.: L-curve curvature bounds via Lanczos bidiagonalization. Electron. Trans. Numer. Anal. 14, 20–35 (2002)
Calvetti, D., Lewis, B., Reichel, L.: GMRES, L-curves, and discrete ill-posed problems. BIT 42, 44–65 (2002)
Castellanos, J.L., Gómez, S., Guerra, V.: The triangle method for finding the corner of the L-curve. Appl. Numer. Math. 43, 359–373 (2002)
Donatelli, M.: Fast transforms for high order boundary conditions in deconvolution problems. BIT 50, 559–576 (2010)
Eldén, L.: A weighted pseudoinverse, generalized singular values, and constrained least squares problems. BIT 22, 487–501 (1982)
Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Griffiths, D.F., Watson, G. A. (eds.) Numerical Analysis 1993, pp. 105–156. Longman, Essex (1994)
Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton University Press, Princeton (2010)
Golub, G.H., von Matt, U.: Tikhonov regularization for large scale problems. In: Golub, G.H., Lui, S.H., Luk, F., Plemmons, R. (eds.) Workshop on Scientific Computing, pp. 3–26. Springer, New York (1997)
Golub, G.H., von Matt, U.: Generalized cross-validation for large scale problems. J. Comput. Graph. Stat. 6, 1–34 (1997)
Hanke, M.: Conjugate Gradient Type Methods for Ill-Posed Problems. Longman, Essex (1995)
Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)
Hansen, P.C.: Analysis of the discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)
Hansen, P.C., Jensen, T.K., Rodriguez, G.: An adaptive pruning algorithm for the discrete L-curve criterion. J. Comput. Appl. Math. 198, 483–492 (2006)
Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993)
Hämarik, U., Palm, R., Raus, T.: A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level. J. Comput. Appl. Math. 236, 2146–2157 (2012)
Hnětynková, I., Plešinger, M., Strakoš, Z.: The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data. BIT 49, 669–696 (2009)
Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)
Lukas, M.A.: Robust generalized cross-validation for choosing the regularization parameter. Inverse Probl. 22, 1883–1902 (2006)
Morigi, S., Reichel, L., Sgallari, F., Zama, F.: Iterative methods for ill-posed problems and semiconvergent sequences. J. Comput. Appl. Math. 193, 157–167 (2006)
Neuman, A., Reichel, L., Sadok, H.: Implementations of range restricted iterative methods for linear discrete ill-posed problems. Linear Algebra Appl. 436, 3974–3990 (2012)
Neuman, A., Reichel, L., Sadok, H.: Algorithms for range restricted iterative methods for linear discrete ill-posed problems. Numer. Algorithms 59, 325–331 (2012)
Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. Trans. Math. Software 8, 43–71 (1982)
Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. ACM 9, 84–97 (1962)
Reichel, L., Rodriguez, G., Seatzu, S.: Error estimates for large-scale ill-posed problems. Numer. Algorithms 51, 341–361 (2009)
Reichel, L., Sadok, H.: A new L-curve for ill-posed problems. J. Comput. Appl. Math. 219, 493–508 (2008)
Reichel, L., Ye, Q.: Simple square smoothing regularization operators. Electron. Trans. Numer. Anal. 33, 63–83 (2009)
Regińska, T.: A regularization parameter in discrete ill-posed problems. SIAM J. Sci. Comput. 17, 740–749 (1996)
Shaw, Jr., C.B.: Improvements of the resolution of an instrument by numerical solution of an integral equation. J. Math. Anal. Appl. 37, 83–112 (1972)
Tikhonov, A., Arsenin, V.: Solutions of Ill-Posed Problems. Wiley, New York (1977)