Old and New Approaches to Target the Hsp90 Chaperone

Current Cancer Drug Targets - Tập 20 Số 4 - Trang 253-270 - 2020
Jackee Sanchez1, Trever R. Carter2, Mark S. Cohen1, Brian S. J. Blagg2
1Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
2Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States

Tóm tắt

The 90-kDa heat shock protein (Hsp90) is a molecular chaperone that ensures cellular proteostasis by maintaining the folding, stabilization, activation, and degradation of over 400 client proteins. Hsp90 is not only critical for routine protein maintenance in healthy cells, but also during states of cellular stress, such as cancer and neurodegenerative diseases. Due to its ability to affect phosphorylation of numerous client proteins, inhibition of Hsp90 has been an attractive anticancer approach since the early 1990’s, when researchers identified a druggable target on the amino terminus of Hsp90 for a variety of cancers. Since then, 17 Hsp90 inhibitors that target the chaperone’s Nterminal domain, have entered clinical trials. None, however, have been approved thus far by the FDA as a cancer monotherapy. In these trials, a major limitation observed with Hsp90 inhibition at the N-terminal domain was dose-limiting toxicities and relatively poor pharmacokinetic profiles. Despite this, preclinical and clinical research continues to show that Hsp90 inhibitors effectively target cancer cell death and decrease tumor progression supporting the rationale for the development of novel Hsp90 inhibitors. Here, we present an in-depth overview of the Hsp90 inhibitors used in clinical trials. Finally, we present current shifts in the field related to targeting the carboxy-terminal domain of Hsp90 as well as to the development of isoform-selective inhibitors as a means to bypass the pitfalls of current Hsp90 inhibitors and improve clinical trial outcomes.

Từ khóa


Tài liệu tham khảo

Miyata Y.; Nakamoto H.; Neckers L.; The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 2013,19(3),347-365

Whitesell L.; Lindquist S.L.; HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005,5(10),761-772

Ritossa F.M.; A new puffing pattern induced by temperature shock an DNP in Drosophila. Experientia 1962,18,571-573

McKenzie S.L.; Henikoff S.; Meselson M.; Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster. Proc Natl Acad Sci USA 1975,72(3),1117-1121

Ritossa F.M.; New puffs induced by temperature shock, DNP and salicilate in salivary chromosomes of D. melanogaster. Drosoph Inf Serv 1963,37,122-123

Ritossa F.M.; Experimental activation of specific loci in ploytene chromosomes of drosophila. Exp Cell Res 1964,35,601-607

Tissières A.; Mitchell H.K.; Tracy U.M.; Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 1974,84(3),389-398

Bagatell R.; Paine-Murrieta G.D.; Taylor C.W.; Pulcini E.J.; Akinaga S.; Benjamin I.J.; Whitesell L.; Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin Cancer Res 2000,6(8),3312-3318

Yufu Y.; Nishimura J.; Nawata H.; High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells. Leuk Res 1992,16(6-7),597-605

Prodromou C.; The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta 2012,1823(3),614-623

Kamal A.; Thao L.; Sensintaffar J.; Zhang L.; Boehm M.F.; Fritz L.C.; Burrows F.J.; A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003,425(6956),407-410

Yano M.; Naito Z.; Tanaka S.; Asano G.; Expression and roles of heat shock proteins in human breast cancer. Jpn J Cancer Res 1996,87(9),908-915

Whitesell L.; Mimnaugh E.G.; De Costa B.; Myers C.E.; Neckers L.M.; Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994,91(18),8324-8328

Xu Y.; Lindquist S.; Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci USA 1993,90(15),7074-7078

Xu Y.; Singer M.A.; Lindquist S.; Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc Natl Acad Sci USA 1999,96(1),109-114

Kim Y.S.; Alarcon S.V.; Lee S.; Lee M.J.; Giaccone G.; Neckers L.; Trepel J.B.; Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 2009,9(15),1479-1492

Schopf F.H.; Biebl M.M.; Buchner J.; The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 2017,18(6),345-360

Murphy M.P.; LeVine H.; Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 2010,19(1),311-323

Stefanis L.; α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2012,2(2)

Kalia L.V.; Kalia S.K.; α-Synuclein and Lewy pathology in Parkinson’s disease. Curr Opin Neurol 2015,28(4),375-381

Csermely P.; Schnaider T.; Soti C.; Prohászka Z.; Nardai G.; The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998,79(2),129-168

Sreedhar A.S.; Kalmár E.; Csermely P.; Shen Y.F.; Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 2004,562(1-3),11-15

Prodromou C.; Roe S.M.; O’Brien R.; Ladbury J.E.; Piper P.W.; Pearl L.H.; Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 1997,90(1),65-75

Meyer P.; Prodromou C.; Hu B.; Vaughan C.; Roe S.M.; Panaretou B.; Piper P.W.; Pearl L.H.; Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 2003,11(3),647-658

Minami Y.; Kimura Y.; Kawasaki H.; Suzuki K.; Yahara I.; The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol Cell Biol 1994,14(2),1459-1464

Jhaveri K.; Taldone T.; Modi S.; Chiosis G.; Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 2012,1823(3),742-755

Yuno A.; Lee M.J.; Lee S.; Tomita Y.; Rekhtman D.; Moore B.; Trepel J.B.; Clinical evaluation and biomarker profiling of Hsp90 inhibitors. Methods Mol Biol 2018,1709,423-441

Garg G.; Khandelwal A.; Blagg B.S.; Anticancer inhibitors of Hsp90 function: Beyond the usual suspects. Adv Cancer Res 2016,129,51-88

Blair L.J.; Genest O.; Mollapour M.; The multiple facets of the Hsp90 machine. Nat Struct Mol Biol 2019,26(2),92-95

Soga S.; Akinaga S.; Shiotsu Y.; Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr Pharm Des 2013,19(3),366-376

Lee B.L.; Rashid S.; Wajda B.; Wolmarans A.; LaPointe P.; Spyracopoulos L.; The Hsp90 chaperone: H and F dynamic nuclear magnetic resonance spectroscopy reveals a perfect enzyme. Biochemistry 2019,58(14),1869-1877

Gorska M.; Popowska U.; Sielicka-Dudzin A.; Kuban-Jankowska A.; Sawczuk W.; Knap N.; Cicero G.; Wozniak F.; Geldanamycin and its derivatives as Hsp90 inhibitors. Front Biosci 2012,17,2269-2277

Huryn D.M.; Wipf P.; Cancer Drug Des Discov 2014,91-120

Biamonte M.A.; Van de Water R.; Arndt J.W.; Scannevin R.H.; Perret D.; Lee W.C.; Heat shock protein 90: Inhibitors in clinical trials. J Med Chem 2010,53(1),3-17

Samuni Y.; Ishii H.; Hyodo F.; Samuni U.; Krishna M.C.; Goldstein S.; Mitchell J.B.; Reactive oxygen species mediate hepatotoxicity induced by the Hsp90 inhibitor geldanamycin and its analogs. Free Radic Biol Med 2010,48(11),1559-1563

Hanson B.E.; Vesole D.H.; Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as an anticancer agent. Expert Opin Investig Drugs 2009,18(9),1375-1383

Lee J.; IPI-493, a potent, orally bioavailable Hsp90 inhibitor of the ansamycin class, in EORTC-NCI-AACR- International Conference, Geneva, Switzerland2008

Floris G.; Sciot R.; Wozniak A.; Van Looy T.; Wellens J.; Faa G.; Normant E.; Debiec-Rychter M.; Schöffski P.; The novel HSP90 inhibitor, IPI-493, is highly effective in human gastrostrointestinal stromal tumor xenografts carrying heterogeneous KIT mutations. Clin Cancer Res 2011,17(17),5604-5614

Chène P.; ATPases as drug targets: Learning from their structure. Nat Rev Drug Discov 2002,1(9),665-673

Chiosis G.; Timaul M.N.; Lucas B.; Munster P.N.; Zheng F.F.; Sepp-Lorenzino L.; Rosen N.; A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 2001,8(3),289-299

Wright L.; Barril X.; Dymock B.; Sheridan L.; Surgenor A.; Beswick M.; Drysdale M.; Collier A.; Massey A.; Davies N.; Fink A.; Fromont C.; Aherne W.; Boxall K.; Sharp S.; Workman P.; Hubbard R.E.; Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chem Biol 2004,11(6),775-785

Lundgren K.; Zhang H.; Brekken J.; Huser N.; Powell R.E.; Timple N.; Busch D.J.; Neely L.; Sensintaffar J.L.; Yang Y.C.; McKenzie A.; Friedman J.; Scannevin R.; Kamal A.; Hong K.; Kasibhatla S.R.; Boehm M.F.; Burrows F.J.; BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther 2009,8(4),921-929

Lundgren K.; Biamonte M.A.; CHAPTER 5 The Discovery of BIIB021 and BIIB028 2014,158-179

Shi X.; Kiesman W.F.; Walker D.G.; Development of Hsp90 Inhibitors for the Treatment of HER-2 Positive Solid Cancers, in Comprehensive Accounts of Pharmaceutical Research and Development: From Discovery to Late-Stage Process Development. Am Chem Soc 2016,1,69-100

Caldas-Lopes E.; Cerchietti L.; Ahn J.H.; Clement C.C.; Robles A.I.; Rodina A.; Moulick K.; Taldone T.; Gozman A.; Guo Y.; Wu N.; de Stanchina E.; White J.; Gross S.S.; Ma Y.; Varticovski L.; Melnick A.; Chiosis G.; Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA 2009,106(20),8368-8373

Fadden P.; Huang K.H.; Veal J.M.; Steed P.M.; Barabasz A.F.; Foley B.; Hu M.; Partridge J.M.; Rice J.; Scott A.; Dubois L.G.; Freed T.A.; Silinski M.A.; Barta T.E.; Hughes P.F.; Ommen A.; Ma W.; Smith E.D.; Spangenberg A.W.; Eaves J.; Hanson G.J.; Hinkley L.; Jenks M.; Lewis M.; Otto J.; Pronk G.J.; Verleysen K.; Haystead T.A.; Hall S.E.; Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting hsp90. Chem Biol 2010,17(7),686-694

Huang K.H.; Veal J.M.; Fadden R.P.; Rice J.W.; Eaves J.; Strachan J.P.; Barabasz A.F.; Foley B.E.; Barta T.E.; Ma W.; Silinski M.A.; Hu M.; Partridge J.M.; Scott A.; DuBois L.G.; Freed T.; Steed P.M.; Ommen A.J.; Smith E.D.; Hughes P.F.; Woodward A.R.; Hanson G.J.; McCall W.S.; Markworth C.J.; Hinkley L.; Jenks M.; Geng L.; Lewis M.; Otto J.; Pronk B.; Verleysen K.; Hall S.E.; Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent, selective and orally active antitumor agents. J Med Chem 2009,52(14),4288-4305

Cheung K.M.; Matthews T.P.; James K.; Rowlands M.G.; Boxall K.J.; Sharp S.Y.; Maloney A.; Roe S.M.; Prodromou C.; Pearl L.H.; Aherne G.W.; McDonald E.; Workman P.; The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorg Med Chem Lett 2005,15(14),3338-3343

Brough P.A.; Aherne W.; Barril X.; Borgognoni J.; Boxall K.; Cansfield J.E.; Cheung K.M.; Collins I.; Davies N.G.; Drysdale M.J.; Dymock B.; Eccles S.A.; Finch H.; Fink A.; Hayes A.; Howes R.; Hubbard R.E.; James K.; Jordan A.M.; Lockie A.; Martins V.; Massey A.; Matthews T.P.; McDonald E.; Northfield C.J.; Pearl L.H.; Prodromou C.; Ray S.; Raynaud F.I.; Roughley S.D.; Sharp S.Y.; Surgenor A.; Walmsley D.L.; Webb P.; Wood M.; Workman P.; Wright L.; 4,5-diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem 2008,51(2),196-218

Eccles S.A.; Massey A.; Raynaud F.I.; Sharp S.Y.; Box G.; Valenti M.; Patterson L.; de Haven Brandon A.; Gowan S.; Boxall F.; Aherne W.; Rowlands M.; Hayes A.; Martins V.; Urban F.; Boxall K.; Prodromou C.; Pearl L.; James K.; Matthews T.P.; Cheung K.M.; Kalusa A.; Jones K.; McDonald E.; Barril X.; Brough P.A.; Cansfield J.E.; Dymock B.; Drysdale M.J.; Finch H.; Howes R.; Hubbard R.E.; Surgenor A.; Webb P.; Wood M.; Wright L.; Workman P.; NVP-AUY922: A novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 2008,68(8),2850-2860

Jensen M.R.; Schoepfer J.; Radimerski T.; Massey A.; Guy C.T.; Brueggen J.; Quadt C.; Buckler A.; Cozens R.; Drysdale M.J.; Garcia-Echeverria C.; Chène P.; NVP-AUY922: A small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 2008,10(2),R33

Wang Y.; Trepel J.B.; Neckers L.M.; Giaccone G.; STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs 2010,11(12),1466-1476

Woodhead A.J.; Angove H.; Carr M.G.; Chessari G.; Congreve M.; Coyle J.E.; Cosme J.; Graham B.; Day P.J.; Downham R.; Fazal L.; Feltell R.; Figueroa E.; Frederickson M.; Lewis J.; McMenamin R.; Murray C.W.; O’Brien M.A.; Parra L.; Patel S.; Phillips T.; Rees D.C.; Rich S.; Smith D.M.; Trewartha G.; Vinkovic M.; Williams B.; Woolford A.J.; Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J Med Chem 2010,53(16),5956-5969

Murray C.W.; Carr M.G.; Callaghan O.; Chessari G.; Congreve M.; Cowan S.; Coyle J.E.; Downham R.; Figueroa E.; Frederickson M.; Graham B.; McMenamin R.; O’Brien M.A.; Patel S.; Phillips T.R.; Williams G.; Woodhead A.J.; Woolford A.J.; Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J Med Chem 2010,53(16),5942-5955

Nakashima T.; Ishii T.; Tagaya H.; Seike T.; Nakagawa H.; Kanda Y.; Akinaga S.; Soga S.; Shiotsu Y.; New molecular and biological mechanism of antitumor activities of KW-2478, a novel nonansamycin heat shock protein 90 inhibitor, in multiple myeloma cells. Clin Cancer Res 2010,16(10),2792-2802

Cavenagh J.; Oakervee H.; Baetiong-Caguioa P.; Davies F.; Gharibo M.; Rabin N.; Kurman M.; Novak B.; Shiraishi N.; Nakashima D.; Akinaga S.; Yong K.; A phase I/II study of KW-2478, an Hsp90 inhibitor, in combination with bortezomib in patients with relapsed/refractory multiple myeloma. Br J Cancer 2017,117(9),1295-1302

Bussenius J.; Blazey C.M.; Aay N.; Anand N.K.; Arcalas A.; Baik T.; Bowles O.J.; Buhr C.A.; Costanzo S.; Curtis J.K.; DeFina S.C.; Dubenko L.; Heuer T.S.; Huang P.; Jaeger C.; Joshi A.; Kennedy A.R.; Kim A.I.; Lara K.; Lee J.; Li J.; Lougheed J.C.; Ma S.; Malek S.; Manalo J.C.; Martini J.F.; McGrath G.; Nicoll M.; Nuss J.M.; Pack M.; Peto C.J.; Tsang T.H.; Wang L.; Womble S.W.; Yakes M.; Zhang W.; Rice K.D.; Discovery of XL888: A novel tropane-derived small molecule inhibitor of HSP90. Bioorg Med Chem Lett 2012,22(17),5396-5404

Haarberg H.E.; Paraiso K.H.; Wood E.; Rebecca V.W.; Sondak V.K.; Koomen J.M.; Smalley K.S.; Inhibition of Wee1, AKT, and CDK4 underlies the efficacy of the HSP90 inhibitor XL888 in an in vivo model of NRAS-mutant melanoma. Mol Cancer Ther 2013,12(6),901-912

Menezes D.L.; Taverna P.; Jensen M.R.; Abrams T.; Stuart D.; Yu G.K.; Duhl D.; Machajewski T.; Sellers W.R.; Pryer N.K.; Gao Z.; The novel oral Hsp90 inhibitor NVP-HSP990 exhibits potent and broad-spectrum antitumor activities in vitro and in vivo. Mol Cancer Ther 2012,11(3),730-739

Ohkubo S.; Kodama Y.; Muraoka H.; Hitotsumachi H.; Yoshimura C.; Kitade M.; Hashimoto A.; Ito K.; Gomori A.; Takahashi K.; Shibata Y.; Kanoh A.; Yonekura K.; TAS-116, a highly selective inhibitor of heat shock protein 90α and β, demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models. Mol Cancer Ther 2015,14(1),14-22

Shimomura A.; Yamamoto N.; Kondo S.; Fujiwara Y.; Suzuki S.; Yanagitani N.; Horiike A.; Kitazono S.; Ohyanagi F.; Doi T.; Kuboki Y.; Kawazoe A.; Shitara K.; Ohno I.; Banerji U.; Sundar R.; Ohkubo S.; Calleja E.M.; Nishio M.; First-in-human phase I study of an oral HSP90 inhibitor, TAS-116, in patients with advanced solid tumors. Mol Cancer Ther 2019,18(3),531-540

Kurokawa Y.; Phase II study of TAS-116, on oral inhibitor of heat shock protein (HSP90), in metastatic or unresectable gastrointestinal stromal tumor refractory to imatinib, sunitinib, and regorafenib, in ESMO 2017 Congress, Annals of OncologyMadrid, Spain2017,v521-v538

Söti C.; Rácz A.; Csermely P.; A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem 2002,277(9),7066-7075

Donnelly A.; Blagg B.S.; Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 2008,15(26),2702-2717

Schulte T.W.; Akinaga S.; Soga S.; Sullivan W.; Stensgard B.; Toft D.; Neckers L.M.; Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 1998,3(2),100-108

Yun B.G.; Huang W.; Leach N.; Hartson S.D.; Matts R.L.; Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions. Biochemistry 2004,43(25),8217-8229

Marcu M.G.; Chadli A.; Bouhouche I.; Catelli M.; Neckers L.M.; The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 2000,275(47),37181-37186

Chatterjee B.K.; Jayaraj A.; Kumar V.; Blagg B.; Davis R.E.; Jayaram B.; Deep S.; Chaudhuri T.K.; Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32. J Biol Chem 2019,294(16),6450-6467

Rahimi M.N.; McAlpine S.R.; Protein-protein inhibitor designed de novo to target the MEEVD region on the C-terminus of Hsp90 and block co-chaperone activity. Chem Commun (Camb) 2019,55(6),846-849

Terracciano S.; Russo A.; Chini M.G.; Vaccaro M.C.; Potenza M.; Vassallo A.; Riccio R.; Bifulco G.; Bruno I.; Discovery of new molecular entities able to strongly interfere with Hsp90 C-terminal domain. Sci Rep 2018,8(1),1709

Cox M.B.; Miller C.A.; III cooperation of heat shock protein 90 and p23 in aryl hydrocarbon receptor signaling. Cell Stress Chaperones 2004,9(1),4-20

Zhao J.; Zhao H.; Hall J.A.; Brown D.; Brandes E.; Bazzill J.; Grogan P.T.; Subramanian C.; Vielhauer G.; Cohen M.S.; Blagg B.S.; Triazole containing novobiocin and biphenyl amides as Hsp90 C-terminal inhibitors. MedChemComm 2014,5(9),1317-1323

White P.T.; Subramanian C.; Zhu Q.; Zhang H.; Zhao H.; Gallagher R.; Timmermann B.N.; Blagg B.S.; Cohen M.S.; Novel HSP90 inhibitors effectively target functions of thyroid cancer stem cell preventing migration and invasion. Surgery 2016,159(1),142-151

Subramanian C.; Kovatch K.J.; Sim M.W.; Wang G.; Prince M.E.; Carey T.E.; Davis R.; Blagg B.S.J.; Cohen M.S.; Novel C-terminal heat shock protein 90 inhibitors (KU711 and Ku757) are effective in targeting head and neck squamous cell carcinoma cancer stem cells. Neoplasia 2017,19(12),1003-1011

Samadi A.K.; Zhang X.; Mukerji R.; Donnelly A.C.; Blagg B.S.; Cohen M.S.; A novel C-terminal HSP90 inhibitor KU135 induces apoptosis and cell cycle arrest in melanoma cells. Cancer Lett 2011,312(2),158-167

Cohen S.M.; Mukerji R.; Samadi A.K.; Zhang X.; Zhao H.; Blagg B.S.; Cohen M.S.; Novel C-terminal Hsp90 inhibitor for head and neck squamous cell cancer (HNSCC) with in vivo efficacy and improved toxicity profiles compared with standard agents. Ann Surg Oncol 2012,19(Suppl. 3),S483-S490

Byrd K.M.; Subramanian C.; Sanchez J.; Motiwala H.F.; Liu W.; Cohen M.S.; Holzbeierlein J.; Blagg B.S.; Synthesis and biological evaluation of novobiocin core analogues as Hsp90 inhibitors. Chemistry 2016,22(20),6921-6931

Langer T.; Rosmus S.; Fasold H.; Intracellular localization of the 90 kDA heat shock protein (HSP90alpha) determined by expression of a EGFP-HSP90alpha-fusion protein in unstressed and heat stressed 3T3 cells. Cell Biol Int 2003,27(1),47-52

Condelli V.; Crispo F.; Pietrafesa M.; Lettini G.; Matassa D.S.; Esposito F.; Landriscina M.; Maddalena F.; HSP90 molecular chaperones, metabolic rewiring, and epigenetics: Impact on tumor progression and perspective for anticancer therapy. Cells 2019,8(6)

Hanahan D.; Weinberg R.A.; Hallmarks of cancer: The next generation. Cell 2011,144(5),646-674

Li W.; Sahu D.; Tsen F.; Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 2012,1823(3),730-741

Marzec M.; Eletto D.; Argon Y.; GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta 2012,1823(3),774-787

Eletto D.; Dersh D.; Argon Y.; GRP94 in ER quality control and stress responses. Semin Cell Dev Biol 2010,21(5),479-485

Van P.N.; Peter F.; Söling H.D.; Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. No indication for calsequestrin-like proteins in inositol 1,4,5-trisphosphate-sensitive calcium sequestering rat liver vesicles. J Biol Chem 1989,264(29),17494-17501

Biswas C.; Ostrovsky O.; Makarewich C.A.; Wanderling S.; Gidalevitz T.; Argon Y.; The peptide-binding activity of GRP94 is regulated by calcium. Biochem J 2007,405(2),233-241

Felts S.J.; Owen B.A.; Nguyen P.; Trepel J.; Donner D.B.; Toft D.O.; The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 2000,275(5),3305-3312

Song H.Y.; Dunbar J.D.; Zhang Y.X.; Guo D.; Donner D.B.; Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem 1995,270(8),3574-3581

Hua G.; Zhang Q.; Fan Z.; Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J Biol Chem 2007,282(28),20553-20560

Sciacovelli M.; Guzzo G.; Morello V.; Frezza C.; Zheng L.; Nannini N.; Calabrese F.; Laudiero G.; Esposito F.; Landriscina M.; Defilippi P.; Bernardi P.; Rasola A.; The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab 2013,17(6),988-999

Masgras I.; Sanchez-Martin C.; Colombo G.; Rasola A.; The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol 2017,7,58

Xiang F.; Ma S.Y.; Lv Y.L.; Zhang D.X.; Song H.P.; Huang Y.S.; Tumor necrosis factor receptor-associated protein 1 regulates hypoxia-induced apoptosis through a mitochondria-dependent pathway mediated by cytochrome c oxidase subunit II. Burns Trauma 2019,7,16

Grbovic O.M.; Basso A.D.; Sawai A.; Ye Q.; Friedlander P.; Solit D.; Rosen N.; V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc Natl Acad Sci USA 2006,103(1),57-62

Evans C.G.; Wisén S.; Gestwicki J.E.; Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J Biol Chem 2006,281(44),33182-33191

Dickey C.A.; Kamal A.; Lundgren K.; Klosak N.; Bailey R.M.; Dunmore J.; Ash P.; Shoraka S.; Zlatkovic J.; Eckman C.B.; Patterson C.; Dickson D.W.; Nahman N.S.; Hutton M.; Burrows F.; Petrucelli L.; The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 2007,117(3),648-658

Robert J.; Ménoret A.; Cohen N.; Cell surface expression of the endoplasmic reticular heat shock protein gp96 is phylogenetically conserved. J Immunol 1999,163(8),4133-4139

Ansa-Addo E.A.; Thaxton J.; Hong F.; Wu B.X.; Zhang Y.; Fugle C.W.; Metelli A.; Riesenberg B.; Williams K.; Gewirth D.T.; Chiosis G.; Liu B.; Li Z.; Clients and oncogenic roles of molecular chaperone gp96/grp94. Curr Top Med Chem 2016,16(25),2765-2778

Amoroso M.R.; Matassa D.S.; Sisinni L.; Lettini G.; Landriscina M.; Esposito F.; TRAP1 revisited: novel localizations and functions of a ‘next-generation’ biomarker. (review). Int J Oncol 2014,45(3),969-977

Renouf D.J.; Velazquez-Martin J.P.; Simpson R.; Siu L.L.; Bedard P.L.; Ocular toxicity of targeted therapies. J Clin Oncol 2012,30(26),3277-3286

Peterson L.B.; Eskew J.D.; Vielhauer G.A.; Blagg B.S.; The hERG channel is dependent upon the Hsp90α isoform for maturation and trafficking. Mol Pharm 2012,9(6),1841-1846

Neckers L.; Workman P.; Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 2012,18(1),64-76

Rosser M.F.; Nicchitta C.V.; Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94. I. Evidence for allosteric regulation of ligand binding. J Biol Chem 2000,275(30),22798-22805

Wang M.; Shen G.; Blagg B.S.; Radanamycin, a macrocyclic chimera of radicicol and geldanamycin. Bioorg Med Chem Lett 2006,16(9),2459-2462

Shen G.; Blagg B.S.; Radester, a novel inhibitor of the Hsp90 protein folding machinery. Org Lett 2005,7(11),2157-2160

Duerfeldt A.S.; Brandt G.E.; Blagg B.S.; Design, synthesis, and biological evaluation of conformationally constrained cis-amide Hsp90 inhibitors. Org Lett 2009,11(11),2353-2356

Immormino R.M.; Metzger L.E.; Reardon P.N.; Dollins D.E.; Blagg B.S.; Gewirth D.T.; Different poses for ligand and chaperone in inhibitor-bound Hsp90 and GRP94: Implications for paralog-specific drug design. J Mol Biol 2009,388(5),1033-1042

Duerfeldt A.S.; Peterson L.B.; Maynard J.C.; Ng C.L.; Eletto D.; Ostrovsky O.; Shinogle H.E.; Moore D.S.; Argon Y.; Nicchitta C.V.; Blagg B.S.; Development of a Grp94 inhibitor. J Am Chem Soc 2012,134(23),9796-9804

Yang Y.; Liu B.; Dai J.; Srivastava P.K.; Zammit D.J.; Lefrançois L.; Li Z.; Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 2007,26(2),215-226

Crowley V.M.; Khandelwal A.; Mishra S.; Stothert A.R.; Huard D.J.; Zhao J.; Muth A.; Duerfeldt A.S.; Kizziah J.L.; Lieberman R.L.; Dickey C.A.; Blagg B.S.; Development of glucose regulated protein 94-selective inhibitors based on the BnIm and radamide scaffold. J Med Chem 2016,59(7),3471-3488

Stothert A.R.; Suntharalingam A.; Tang X.; Crowley V.M.; Mishra S.J.; Webster J.M.; Nordhues B.A.; Huard D.J.E.; Passaglia C.L.; Lieberman R.L.; Blagg B.S.J.; Blair L.J.; Koren J.; Dickey C.A.; Isoform-selective Hsp90 inhibition rescues model of hereditary open-angle glaucoma. Sci Rep 2017,7(1),17951

Stothert A.R.; Suntharalingam A.; Huard D.J.; Fontaine S.N.; Crowley V.M.; Mishra S.; Blagg B.S.; Lieberman R.L.; Dickey C.A.; Exploiting the interaction between Grp94 and aggregated myocilin to treat glaucoma. Hum Mol Genet 2014,23(24),6470-6480

Crowley V.M.; Huard D.J.E.; Lieberman R.L.; Blagg B.S.J.; Second generation Grp94-selective inhibitors provide opportunities for the inhibition of metastatic cancer. Chemistry 2017,23(62),15775-15782

Khandelwal A.; Crowley V.M.; Blagg B.S.J.; Resorcinol-based Grp94-selective inhibitors. ACS Med Chem Lett 2017,8(10),1013-1018

Patel P.D.; Yan P.; Seidler P.M.; Patel H.J.; Sun W.; Yang C.; Que N.S.; Taldone T.; Finotti P.; Stephani R.A.; Gewirth D.T.; Chiosis G.; Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat Chem Biol 2013,9(11),677-684

Jiang F.; Guo A.P.; Xu J.C.; You Q.D.; Xu X.L.; Discovery of a potent Grp94 selective inhibitor with anti-inflammatory efficacy in a mouse model of ulcerative colitis. J Med Chem 2018,61(21),9513-9533

Ernst J.T.; Liu M.; Zuccola H.; Neubert T.; Beaumont K.; Turnbull A.; Kallel A.; Vought B.; Stamos D.; Correlation between chemotype-dependent binding conformations of HSP90α/β and isoform selectivity-implications for the structure-based design of HSP90α/β selective inhibitors for treating neurodegenerative diseases. Bioorg Med Chem Lett 2014,24(1),204-208

Putcha P.; Danzer K.M.; Kranich L.R.; Scott A.; Silinski M.; Mabbett S.; Hicks C.D.; Veal J.M.; Steed P.M.; Hyman B.T.; McLean P.J.; Brain-permeable small-molecule inhibitors of Hsp90 prevent alpha-synuclein oligomer formation and rescue alpha-synuclein-induced toxicity. J Pharmacol Exp Ther 2010,332(3),849-857

Ernst J.T.; Neubert T.; Liu M.; Sperry S.; Zuccola H.; Turnbull A.; Fleck B.; Kargo W.; Woody L.; Chiang P.; Tran D.; Chen W.; Snyder P.; Alcacio T.; Nezami A.; Reynolds J.; Alvi K.; Goulet L.; Stamos D.; Identification of novel HSP90α/β isoform selective inhibitors using structure-based drug design. demonstration of potential utility in treating CNS disorders such as Huntington’s disease. J Med Chem 2014,57(8),3382-3400

Khandelwal A.; Kent C.N.; Balch M.; Peng S.; Mishra S.J.; Deng J.; Day V.W.; Liu W.; Subramanian C.; Cohen M.; Holzbeierlein J.M.; Matts R.; Blagg B.S.J.; Structure-guided design of an Hsp90β N-terminal isoform-selective inhibitor. Nat Commun 2018,9(1),425

Plescia J.; Salz W.; Xia F.; Pennati M.; Zaffaroni N.; Daidone M.G.; Meli M.; Dohi T.; Fortugno P.; Nefedova Y.; Gabrilovich D.I.; Colombo G.; Altieri D.C.; Rational design of shepherdin, a novel anticancer agent. Cancer Cell 2005,7(5),457-468

Altieri D.C.; Stein G.S.; Lian J.B.; Languino L.R.; TRAP-1, the mitochondrial Hsp90. Biochim Biophys Acta 2012,1823(3),767-773

Siegelin M.D.; Inhibition of the mitochondrial Hsp90 chaperone network: A novel, efficient treatment strategy for cancer? Cancer Lett 2013,333(2),133-146

Seo Y.H.; Organelle-specific Hsp90 inhibitors. Arch Pharm Res 2015,38(9),1582-1590

Lee C.; Park H.K.; Jeong H.; Lim J.; Lee A.J.; Cheon K.Y.; Kim C.S.; Thomas A.P.; Bae B.; Kim N.D.; Kim S.H.; Suh P.G.; Ryu J.H.; Kang B.H.; Development of a mitochondria-targeted Hsp90 inhibitor based on the crystal structures of human TRAP1. J Am Chem Soc 2015,137(13),4358-4367

Park H.K.; Jeong H.; Ko E.; Lee G.; Lee J.E.; Lee S.K.; Lee A.J.; Im J.Y.; Hu S.; Kim S.H.; Lee J.H.; Lee C.; Kang S.; Kang B.H.; Paralog specificity determines subcellular distribution, action mechanism, and anticancer activity of TRAP1 inhibitors. J Med Chem 2017,60(17),7569-7578