Oja centers and centers of gravity

Computational Geometry - Tập 46 - Trang 140-147 - 2013
Dan Chen1, Olivier Devillers2, John Iacono3, Stefan Langerman4, Pat Morin1
1School of Computer Science, Carleton University, Canada
2INRIA Sophia Antipolis - Méditerranée, France
3Department of Computer and Information Science, Polytechnic University, United States
4Département dʼInformatique, Université Libre de Bruxelles, Belgium

Tài liệu tham khảo

Aloupis, 2003, Algorithms for bivariate medians and a Fermat–Toricelli problem for lines, Computational Geometry: Theory and Applications, 26, 69, 10.1016/S0925-7721(02)00173-6 Bárány, 1982, A generalization of Carathéodoryʼs theorem, Discrete Mathematics, 40, 141, 10.1016/0012-365X(82)90115-7 Boros, 1984, The maximal number of covers by the triangles of a given vertex set in the plane, Geometrica Dedicata, 17, 69 Edwards, 1998 Fischer Liu, 1990, On a notion of data depth based upon random simplices, The Annals of Statistics, 18, 405, 10.1214/aos/1176347507 Matoušek, 2002 Niinimaa, 1990, The finite-sample breakdown point of the Oja bivariate median and of the corresponding half-samples version, Statistics and Probability Letters, 10, 325, 10.1016/0167-7152(90)90050-H Oja, 1983, Descriptive statistics for multivariate distributions, Statistics and Probability Letters, 1, 327, 10.1016/0167-7152(83)90054-8 Pach, 1995 T. Ronkainen, H. Oja, P. Orponen, Computation of the multivariate Oja median, in: R. Dutter, P. Filzmoser (Eds.), International Conference on Robust Statistics (ICORS 2001), 2003. J. Tukey, Mathematics and the picturing of data, in: International Conference of Mathematicians, 1971. Webster, 1995