Tính chất cấu trúc dầu của sợi nano Kraft lignin/cellulose acetate được tạo ra bằng phương pháp điện xơ hóa trong các ứng dụng bôi trơn: ảnh hưởng của nguồn lignin và tỷ lệ lignin/cellulose acetate

Springer Science and Business Media LLC - Tập 30 - Trang 1553-1566 - 2022
J. F. Rubio-Valle1, C. Valencia1, M. Sánchez1, J. E. Martín-Alfonso1, J. M. Franco1
1Pro2TecS – Chemical Product and Process Technology Research Center, Department of Chemical Engineering and Materials Science, ETSI, Universidad de Huelva, Huelva, Spain

Tóm tắt

Trong công trình này, các cấu trúc nano Kraft lignin/cellulose acetate được tạo ra bằng phương pháp điện xơ hóa đã được sản xuất, đánh giá và đề xuất như là các tác nhân cấu trúc hoặc làm đặc cho dầu thầu dầu trong các ứng dụng bôi trơn. Các dung dịch Kraft lignin (KL) được lấy từ nhiều nguồn khác nhau (eucalyptus, poplar và việc tỉa lá cây ô liu) và cellulose acetate (CA) đã được chuẩn bị và sử dụng làm nguyên liệu cho quá trình điện xơ hóa. Các thuộc tính lưu biến (rheology) (độ nhớt cắt và độ nhớt kéo dài), độ dẫn điện và độ căng bề mặt của các dung dịch KL/CA ảnh hưởng đến hình thái của các sợi nano được tạo ra từ điện xơ hóa, điều này lại bị ảnh hưởng bởi cấu trúc hóa học và thành phần của lignin Kraft. Các cấu trúc nano KL/CA được tạo ra từ điện xơ hóa gồm có các nano hạt kết nối với nhau qua các sợi, các sợi nano có hạt nhấn và các tấm sợi nano đồng nhất đã có thể tạo thành các phân tán tinh thể đồng nhất dạng gel bằng cách đơn giản là khuếch tán cơ học chúng vào dầu thầu dầu. Sự sưng của các sợi KL/CA trong mạng lưới thấm đã được chứng minh. Các thuộc tính lưu biến, ma sát và vi cấu trúc của các oleogel này chủ yếu được điều chỉnh bởi các đặc điểm hình thái của các cấu trúc nano được điện xơ hóa, tức là đường kính sợi, số lượng hạt nhấn và độ rỗng. Các thuộc tính lưu biến của oleogel thu được có thể được điều chỉnh bằng cách thay đổi nguồn lignin và tỷ lệ khối lượng KL:CA. Theo các thuộc tính lưu biến và ma sát của chúng, oleogel dựa trên cấu trúc nano KL/CA được đề xuất như một sự thay thế bền vững cho các mỡ bôi trơn thông thường.

Từ khóa

#Kraft lignin #cellulose acetate #điện xơ hóa #đặc tính lưu biến #ứng dụng bôi trơn #oleogel

Tài liệu tham khảo

Akbari S, Bahi A, Farahani A et al (2021) Fabrication and characterization of lignin/dendrimer electrospun blended fiber mats. Molecules 26:518. https://doi.org/10.3390/molecules26030518 Angammana CJ, Jayaram SH (2011) Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans Ind Appl 47:1109–1117. https://doi.org/10.1109/TIA.2011.2127431 Aslanzadeh S, Zhu Z, Luo Q et al (2016) Electrospinning of colloidal lignin in poly(ethylene oxide) N, N -Dimethylformamide solutions. Macromol Mater Eng 301:401–413. https://doi.org/10.1002/mame.201500317 Bajpai P (2016) Structure of Lignocellulosic Biomass. Pp. 7–12 Borrego M, Martín-Alfonso JE, Sánchez MC et al (2021) Electrospun lignin-PVP nanofibers and their ability for structuring oil. Int J Biol Macromol 180:212–221. https://doi.org/10.1016/j.ijbiomac.2021.03.069 Borrero-López AM, Blánquez A, Valencia C et al (2018a) Valorization of soda lignin from wheat straw solid-state fermentation: production of Oleogels. ACS Sustain Chem Eng 6:5198–5205. https://doi.org/10.1021/acssuschemeng.7b04846 Borrero-López AM, Santiago-Medina FJ, Valencia C et al (2018b) Valorization of Kraft lignin as thickener in castor oil for lubricant applications. J Renew Mater 6:347–361. https://doi.org/10.7569/JRM.2017.634160 Borrero-López AM, Valencia C, Blánquez A et al (2020) Cellulose pulp- and castor oil-based polyurethanes for lubricating applications: influence of streptomyces action on barley and wheat straws. Polym Basel 12:2822. https://doi.org/10.3390/polym12122822 Borrero-López AM, Valencia C, Franco JM (2022) Lignocellulosic materials for the production of biofuels, biochemicals and biomaterials and applications of lignocellulose-based polyurethanes: a review. Polym Basel 14:881. https://doi.org/10.3390/polym14050881 Boyde S (2002) Green lubricants. environmental benefits and impacts of lubrication. Green Chem 4:293–307. https://doi.org/10.1039/b202272a Cai J, He Y, Yu X et al (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sustain Energy Rev 76:309–322. https://doi.org/10.1016/j.rser.2017.03.072 Cara C, Ruiz E, Oliva JM et al (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876. https://doi.org/10.1016/j.biortech.2007.03.037 Cortés-Triviño E, Valencia C, Delgado MA, Franco JM (2019) Thermo-rheological and tribological properties of novel bio-lubricating greases thickened with epoxidized lignocellulosic materials. J Ind Eng Chem 80:626–632. https://doi.org/10.1016/j.jiec.2019.08.052 Cortés-Triviño E, Valencia C, Franco JM (2021) Thickening castor oil with a lignin-enriched fraction from sugarcane bagasse waste via epoxidation: a rheological and hydrodynamic approach. ACS Sustain Chem Eng 9:10503–10512. https://doi.org/10.1021/acssuschemeng.1c02166 Dallmeyer I, Ko F, Kadla JF (2014) Correlation of elongational fluid properties to fiber diameter in electrospinning of softwood Kraft lignin solutions. Ind Eng Chem Res 53:2697–2705. https://doi.org/10.1021/ie403724y Davidovich-Pinhas M, Barbut S, Marangoni AG (2015) The gelation of oil using ethyl cellulose. Carbohydr Polym 117:869–878. https://doi.org/10.1016/j.carbpol.2014.10.035 Delgado MA, Valencia C, Sánchez MC et al (2006) Influence of soap concentration and oil viscosity on the rheology and microstructure of lubricating greases. Ind Eng Chem Res 45:1902–1910. https://doi.org/10.1021/ie050826f Delgado MA, Cortés-Triviño E, Valencia C, Franco JM (2020) Tribological study of epoxide-functionalized alkali lignin-based gel-like biogreases. Tribol Int 146:106231. https://doi.org/10.1016/j.triboint.2020.106231 Diez-Rodríguez G, Hübner L, Antunes L, Nava D (2013) Herpetogramma bipunctalis (Lepidoptera: Crambidae) biology and techniques for rearing on leaves of the blackberry (Rubus spp., Rosaceae). Braz J Biol 73:179–184. https://doi.org/10.1590/S1519-69842013000100019 Ding B, Li C, Hotta Y et al (2006) Conversion of an Electrospun nanofibrous cellulose acetate mat from a super-hydrophilic to super-hydrophobic surface. Nanotechnology 17:4332–4339. https://doi.org/10.1088/0957-4484/17/17/009 Du B, Zhu H, Chai L et al (2021) Effect of lignin structure in different biomass resources on the performance of lignin-based carbon nanofibers as supercapacitor electrode. Ind Crops Prod 170:113745. https://doi.org/10.1016/j.indcrop.2021.113745 Gallego R, Arteaga JF, Valencia C, Franco JM (2013) Chemical modification of methyl cellulose with HMDI to modulate the thickening properties in castor oil. Cellulose 20:495–507. https://doi.org/10.1007/s10570-012-9803-4 García-Fuentevilla L, Rubio-Valle JF, Martín-Sampedro R et al (2022) Different Kraft lignin sources for Electrospun nanostructures production: influence of chemical structure and composition. Int J Biol Macromol 214:554–567. https://doi.org/10.1016/j.ijbiomac.2022.06.121 Gellerstedt G, Henriksson G (2008) Lignins: Major Sources, Structure and Properties. In: Monomers, Polymers and Composites from Renewable Resources. Elsevier, pp. 201–224 Gnansounou E (2010) Production and use of lignocellulosic bioethanol in Europe: current situation and perspectives. Bioresour Technol 101:4842–4850. https://doi.org/10.1016/j.biortech.2010.02.002 Heyer P, Läuger J (2009) Correlation between friction and flow of lubricating greases in a new tribometer device. Lubr Sci 21:253–268. https://doi.org/10.1002/ls.88 Jedrzejczyk MA, Van den Bosch S, Van Aelst J et al (2021) Lignin-based additives for improved thermo-oxidative stability of Biolubricants. ACS Sustain Chem Eng 9:12548–12559. https://doi.org/10.1021/acssuschemeng.1c02799 Jia H, Sun N, Dirican M et al (2018) Electrospun Kraft lignin/cellulose acetate-derived nanocarbon network as an anode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 10:44368–44375. https://doi.org/10.1021/acsami.8b13033 Kakoria A, Sinha-Ray S (2018) A Review on biopolymer-based fibers via electrospinning and solution blowing and their applications. Fibers 6:45. https://doi.org/10.3390/fib6030045 Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15:1740. https://doi.org/10.1039/c3gc00060e Lainez M, González JM, Aguilar A, Vela C (2018) Spanish strategy on bioeconomy: towards a knowledge based sustainable innovation. N Biotechnol 40:87–95. https://doi.org/10.1016/j.nbt.2017.05.006 Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004 Lewandowski I (ed) (2018) Bioeconomy. Springer International Publishing, Cham Li Z, Wang C (2013) Effects of Working Parameters on Electrospinning. pp. 15–28 Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467. https://doi.org/10.1016/j.pecs.2012.03.002 Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys 40:2119–2129. https://doi.org/10.1002/polb.10261 Martín-Alfonso JE, Núñez N, Valencia C et al (2011) Formulation of new biodegradable lubricating greases using ethylated cellulose pulp as thickener agent. J Ind Eng Chem 17:818–823. https://doi.org/10.1016/j.jiec.2011.09.003 Negro MJ, Manzanares P, Ruiz E, et al (2017) The biorefinery concept for the industrial valorization of residues from olive oil industry. In: Olive Mill Waste. Elsevier, pp. 57–78 Obst JR (1983) Analytical pyrolysis of hardwood and softwood lignins and its use in lignin-type determination of hardwood vessel elements. J Wood Chem Technol 3:377–397. https://doi.org/10.1080/02773818308085170 Octave S, Thomas D (2009) Biorefinery: toward an industrial metabolism. Biochimie 91:659–664. https://doi.org/10.1016/j.biochi.2009.03.015 Pathan AK, Bond J, Gaskin RE (2010) Sample preparation for SEM of plant surfaces. Mater Today 12:32–43. https://doi.org/10.1016/S1369-7021(10)70143-7 Pelaez-Samaniego MR, Yadama V, Garcia-Perez M et al (2016) Interrelationship between lignin-rich dichloromethane extracts of hot water-treated wood fibers and high-density polyethylene (HDPE) in wood plastic composite (WPC) production. Holzforschung 70:31–38. https://doi.org/10.1515/hf-2014-0309 Quinchia LA, Delgado MA, Valencia C et al (2010) Viscosity modification of different vegetable oils with EVA copolymer for lubricant applications. Ind Crops Prod 32:607–612. https://doi.org/10.1016/j.indcrop.2010.07.011 Romero-García JM, Niño L, Martínez-Patiño C et al (2014) Biorefinery based on olive biomass. State of the art and future trends. Bioresour Technol 159:421–432. https://doi.org/10.1016/j.biortech.2014.03.062 Rubio-Valle JF, Sánchez MC, Valencia C et al (2021b) Electrohydrodynamic processing of PVP-doped Kraft lignin micro- and nano-structures and application of Electrospun nanofiber templates to produce Oleogels. Polymers (basel) 13:2206. https://doi.org/10.3390/polym13132206 Rubio-Valle JF, Jiménez-Rosado M, Perez-Puyana V, et al (2021a) Electrospun nanofibres with antimicrobial activities. In: Antimicrobial Textiles from Natural Resources. Elsevier, pp. 589–618 Salas C (2017) Solution electrospinning of nanofibers. In: Electrospun Nanofibers. Elsevier, pp 73–108 Sánchez R, Valencia C, Franco JM (2014) Rheological and tribological characterization of a new acylated chitosan-based biodegradable lubricating grease: a comparative study with traditional lithium and calcium greases. Tribol Trans 57:445–454. https://doi.org/10.1080/10402004.2014.880541 Shahzadi T, Mehmood S, Irshad M et al (2014) Advances in lignocellulosic biotechnology: a brief review on lignocellulosic biomass and cellulases. Adv Biosci Biotechnol 05:246–251. https://doi.org/10.4236/abb.2014.53031 Sørensen A, Lübeck M, Lübeck P, Ahring B (2013) Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3:612–631. https://doi.org/10.3390/biom3030612 Staffas L, Gustavsson M, McCormick K (2013) Strategies and policies for the bioeconomy and bio-based economy: an analysis of official national approaches. Sustainability 5:2751–2769. https://doi.org/10.3390/su5062751 Stokroos K, Der Want V, Jongebloed, (1998) A comparative study of thin coatings of Au/Pd, Pt and Cr produced by magnetron sputtering for FE-SEM. J Microsc 189:79–89. https://doi.org/10.1046/j.1365-2818.1998.00282.x Sun S, Huang Y, Sun R, Tu M (2016) The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chem 18:4276–4286. https://doi.org/10.1039/C6GC00685J Svinterikos E, Zuburtikudis I, Al-Marzouqi M (2020) Fabricating carbon nanofibers from a lignin/r-PET blend: the synergy of mass ratio with the average fiber diameter. Appl Nanosci 10:1331–1343. https://doi.org/10.1007/s13204-019-01235-7 Syahir AZ, Zulkifli NWM, Masjuki HH et al (2017) A review on bio-based lubricants and their applications. J Clean Prod 168:997–1016. https://doi.org/10.1016/j.jclepro.2017.09.106 Teixeira MA, Paiva MC, Amorim MTP, Felgueiras HP (2020) Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing. Nanomaterials. https://doi.org/10.3390/nano10030557 Ullah K, Kumar Sharma V, Dhingra S et al (2015) Assessing the lignocellulosic biomass resources potential in developing countries: a critical review. Renew Sustain Energy Rev 51:682–698. https://doi.org/10.1016/j.rser.2015.06.044 Wang X, He G, Liu H, et al (2013) Fabrication and morphological control of electrospun ethyl cellulose nanofibers. 8th Annu IEEE Int Conf Nano/Micro Eng Mol Syst IEEE NEMS 2013 1:324–327. https://doi.org/10.1109/NEMS.2013.6559742 Xi Y, Yang D, Qiu X et al (2018) Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Ind Crops Prod 124:747–754. https://doi.org/10.1016/j.indcrop.2018.08.018 Yu JH, Fridrikh SV, Rutledge GC (2006) The role of elasticity in the formation of electrospun fibers. Polymer (guildf) 47:4789–4797. https://doi.org/10.1016/j.polymer.2006.04.050 Zhang J, Li J, Wang A et al (2018) Improvement of the tribological properties of a lithium-based grease by addition of graphene. J Nanosci Nanotechnol 18:7163–7169. https://doi.org/10.1166/jnn.2018.15511