Ohmic Heating and Non-uniform Heat Source/Sink Roles on 3D Darcy–Forchheimer Flow of CNTs Nanofluids Over a Stretching Surface
Tóm tắt
Từ khóa
Tài liệu tham khảo
Khan, W.A.; Khan, Z.H.; Rahi, M.: Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl. Nanosci. 4(5), 633–641 (2014)
Hayat, T.; Khan, M.I.; Waqas, M.; Alsaedi, A.; Farooq, M.: Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Comput. Methods Appl. Mech. Eng. 315, 1011–1024 (2019)
Ahmed, Z.; Nadeem, S.; Saleem, S.; Ellahi, R.: Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. Int. J. Numer. Method Heat Fluid Flow 29(12), 4607–4623 (2019)
Shahsavar, A.; Sardari, P.T.; Toghraie, D.: Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int. J. Numer. Method Heat Fluid Flow 29(3), 915–934 (2019)
Kumar, K.G.; Rahimi-Gorji, M.; Reddy, M.G.; Chamkha, A.J.; Alarifi, I.M.: Enhancement of heat transfer in a convergent/divergent channel by using carbon nanotubes in the presence of a Darcy–Forchheimer medium. Microsyst. Technol. 26(2), 323–332 (2020)
Forchheimer, P.: Wasserbewegung durch boden. Z. Ver. Deutsch. Ing. 45, 1782–1788 (1901)
Chamkha, A.J.: Solar radiation assisted natural convection in uniform porous medium supported by a vertical flat plate. J. Heat Transf. 119(1), 89–96 (1997)
Zeng, Z.; Grigg, R.: A criterion for non-Darcy flow in porous media. Transp. Porous Med. 63(1), 57–69 (2006)
Mukhopadhyay, S.; De, P.R.; Bhattacharyya, K.; Layek, G.C.: Forced convective flow and heat transfer over a porous plate in a Darcy–Forchheimer porous medium in presence of radiation. Meccanica 47(1), 153–161 (2012)
Muhammad, T.; Alsaedi, A.; Hayat, T.; Shehzad, S.A.: A revised model for Darcy–Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition. Results Phys. 7, 2791–2797 (2017)
Sheikholeslami, M.; Zeeshan, A.: Numerical simulation of Fe3O4-water nanofluid flow in a non-Darcy porous media. Int. J. Numer. Method Heat Fluid Flow 28(3), 641–660 (2018)
Jawad, M.; Shah, Z.; Islam, S.; Bonyah, E.; Khan, A.Z.: Darcy–Forchheimer flow of MHD nanofluid thin film flow with Joule dissipation and Navier’s partial slip. J. Phys. Commun. 2(11), 115014 (2018)
Hayat, T.; Rafique, K.; Muhammad, T.; Alsaedi, A.; Ayub, M.: Carbon nanotubes significance in Darcy–Forchheimer flow. Results Phys. 8, 26–33 (2018)
Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A.: Numerical study for Darcy–Forchheimer flow of nanofluid due to an exponentially stretching curved surface. Results Phys. 8, 764–771 (2018)
Hayat, T.; Ullah, S.; Khan, M.I.; Alsaedi, A.; Zia, Q.Z.: Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption. Results Phys. 8, 473–480 (2018)
Tarakaramu, N.; Narayana, P.S.; Venkateswarlu, B.: MHD three dimensional Darcy–Forchheimer flow of a nanofluid with nonlinear thermal radiation. In: Applied Mathematics and Scientific Computing Birkhäuser, Cham, pp. 87–97 (2019)
Hoseinzadeh, S.; Heyns, P.S.; Chamkha, A.J.; Shirkhani, A.: Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J. Therm. Anal. Calorim. 138(1), 727–735 (2019)
Hoseinzadeh, S.; Moafi, A.; Shirkhani, A.; Chamkha, A.J.: Numerical validation heat transfer of rectangular cross-section porous fins. J. Thermophys. Heat Tr. 33(3), 698–704 (2019)
Alsabery, A.I.; Mohebbi, R.; Chamkha, A.J.; Hashim, I.: Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem. Eng. Sci. 201, 247–263 (2019)
Takhar, H.S.; Chamkha, A.J.; Nath, G.: Unsteady three-dimensional MHD-boundary-layer flow due to the impulsive motion of a stretching surface. Acta Mech. 146(1–2), 59–71 (2001)
Chamkha, A.J.; Al-Mudhaf, A.: Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects. Int. J. Therm. Sci. 44(3), 267–276 (2005)
Raju, C.S.K.; Sandeep, N.; Malvandi, A.: Free convective heat and mass transfer of MHD non-Newtonian nanofluids over a cone in the presence of non-uniform heat source/sink. J. Mol. Liq. 221, 108–115 (2016)
Pandey, A.K.; Kumar, M.: Effect of viscous dissipation and suction/injection on MHD nanofluid flow over a wedge with porous medium and slip. Alex. Eng. J. 55(4), 3115–3123 (2018)
Reddy, P.S.A.; Chamkha, A.: Heat and mass transfer characteristics of MHD three-dimensional flow over a stretching sheet filled with water-based alumina nanofluid. Int. J. Numer. Method Heat Fluid Flow 28(3), 532–546 (2018)
Pandey, A.K.; Kumar, M.: MHD flow inside a stretching/shrinking convergent/divergent channel with heat generation/absorption and viscous-Ohmic dissipation utilizing Cu–water nanofluid. Comput. Therm. Sci. 10(05), 457–471 (2018)
Mishra, A.; Pandey, A.K.; Kumar, M.: Velocity, thermal and concentration slip effects on MHD silver-water nanofluid past a permeable cone with suction/injection and viscous-Ohmic dissipation. Heat Transf. Res. 50(14), 1351–1367 (2019)
Ibáñez, G.; López, A.; López, I.; Pantoja, J.; Moreira, J.; Lastres, O.: Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective–radiative boundary conditions. J. Therm. Anal. Calorim. 135(6), 3401–3420 (2019)
Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Yang, Z.; Sheremet, M.A.: Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int. J. Heat Mass Tran. 130, 123–134 (2019)
Dogonchi, A.S.; Armaghani, T.; Chamkha, A.J.; Ganji, D.D.: Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arab. J. Sci. Eng. 44(9), 7919–7931 (2019)
Upreti, H.; Kumar, M.: Influence of non-linear radiation, Joule heating and viscous dissipation on the boundary layer flow of MHD nanofluid flow over a thin moving needle. Multidisp. Model. Mater. Struct. 16(1), 208–224 (2019)
Dogonchi, A.S.; Tayebi, T.; Chamkha, A.J.; Ganji, D.D.: Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J. Therm. Anal. Calorim 139(1), 661–671 (2020)
Chamkha, A.J.: Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium. Int. J. Eng. Sci. 35(10–11), 975–986 (1997)
Chamkha, A.J.; Al-Mudhaf, A.F.; Pop, I.: Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium. Int. Commun. Heat Mass 33(9), 1096–1102 (2006)
Akbar, N.S.; Nadeem, S.; Haq, R.U.; Khan, Z.H.: Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chin. J. Aeronaut. 26(6), 1389–1397 (2013)
Muhammad, T.; Hayat, T.; Shehzad, S.A.; Alsaedi, A.: Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes. Results Phys. 8, 365–371 (2016)
Khan, M.; Ahmad, L.; Khan, W.A.: Numerically framing the impact of radiation on magnetonanoparticles for 3D Sisko fluid flow. J. Braz. Soc. Mech. Sci. Eng. 39(11), 4475–4487 (2017)
Nayak, M.K.; Akbar, N.S.; Pandey, V.S.; Khan, Z.H.; Tripathi, D.: 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technol. 315, 205–215 (2017)
Gireesha, B.J.; Archana, M.; Gorla, R.R.; Makinde, O.D.: MHD three dimensional double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface. Int. J. Numer. Method Heat Fluid Flow 27(12), 2858–2878 (2017)
Olatundun, A.T.; Makinde, O.D.: Analysis of Blasius flow of hybrid nanofluids over a convectively heated surface. Defect Diffus. Forum 377, 29–41 (2017)
Krishna, P.M.; Sandeep, N.; Sharma, R.P.; Makinde, O.D.: Thermal radiation effect on 3D slip motion of AlCu-water and Cu-water nanofluids over a variable thickness stretched surface. Defect Diffus. Forum 377, 141–154 (2017)
Upreti, H.; Pandey, A.K.; Kumar, M.: MHD flow of Ag-water nanofluid over a flat porous plate with viscous-Ohmic dissipation, suction/injection and heat generation/absorption. Alex. Eng. J. 57(3), 1839–1847 (2018)
Hussain, Z.; Hayat, T.; Alsaedi, A.; Ahmad, B.: Three-dimensional convective flow of CNTs nanofluids with heat generation/absorption effect: a numerical study. Comput. Method Appl. M. 329, 40–54 (2018)