Oenothera biennis seed oil as an alternative raw material for production of bio-polyol for rigid polyurethane-polyisocyanurate foams
Tài liệu tham khảo
Abdel Hakim, 2011, Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol, Mater. Chem. Phys., 129, 301, 10.1016/j.matchemphys.2011.04.008
ASTM Standard D7487 – 13e1, 2008 (2016). Standard Practice for Polyurethane Raw Materials: Polyurethane Foam Cup Test. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D7487-13E01.
Badri, 2012, Biobased polyurethane from palm kernel oil-based polyol, 447
Barre, 2001, Potential of evening primrose, borage, black currant, and fungal oils in human health, Ann. Nutr. Metab., 45, 47, 10.1159/000046706
Bartuzi, 2012, Vegetable oils, characteristics and production technology, J NutriLife, 9
Bhoyate, 2018, Sustainable flame-retardant polyurethanes using renewable resources, Ind Crops Prod., 123, 480, 10.1016/j.indcrop.2018.07.025
Białek, 2015, The importance of γ-linolenic acid in the prevention and treatment, Postep. Hig. Med. Dosw, 69, 892, 10.5604/17322693.1162991
Bukowski, 2009
Chemistry and Business, 2011
Colak, 2016, Impact of the molecular environment on thiol-ene coupling for biofunctionalization and conjugation, Bioconjugate Chem., 27, 2111, 10.1021/acs.bioconjchem.6b00349
Członka, 2018, Linseed oil as a natural modifier of rigid polyurethane foams, Ind. Crops Prod., 115, 40, 10.1016/j.indcrop.2018.02.019
Desroches, 2011, Synthesis of biobased polyols by thiol-ene coupling from vegetable oils, Macromolecules, 44, 2489, 10.1021/ma102884w
Dworakowska, 2012, Microwave-assisted synthesis of polyols from rapeseed oil and properties of flexible polyurethane foams, Polymers, 4, 1462, 10.3390/polym4031462
Eskin, 2008, Borage and evening primrose oil, Eur. J. Lipid Sci. Technol., 110, 651, 10.1002/ejlt.200700259
Fleischhauer S. G., Guthmann J., Spiegelberger R., 2013. Enzyklopädie essbare Wildpflanzen. 2000 Pflanzen Mitteleuropas. Bestimmung, Sammeltipps, Inhaltsstoffe, Heilwirkung, Verwendung in der Küche. AT Verlag, Aarau.
Fridrihsone-Girone, 2014, Characterization of polyurethane networks based on rapeseed oil derived polyol, Polimery, 59, 333, 10.14314/polimery.2014.333
Garrett T.M., Du X.X., 2010. High bio content hybrid natural oil polyols and methods therefor. Pat. US 7674925 B2.
Garrett T.M., Du X.X., 2014. Method for increasing miscibility of natural oil polyol with petroleum-based polyol. Pat. US 8828269 B1.
Garrison, 2014, Effects of unsaturation and different ring-opening methods on the properties of vegetable oil-based polyurethane coatings, Polymer, 55, 1004, 10.1016/j.polymer.2014.01.014
Gerwin, 2008
Ghasemnezhad, 2007, Seed yield, oil content and fatty acid composition of Oenothera biennis L. affected by harvest date and harvest method, Ind. Crops Prod., 25, 274, 10.1016/j.indcrop.2006.12.005
Ghasemnezhad, 2008, Yield, oil constituents, and protein content of evening primrose (Oenothera biennis L.) seeds depending on harvest time, harvest method and nitrogen application, Ind. Crops Prod., 28, 17, 10.1016/j.indcrop.2007.12.006
Guo, 2000, Rigid polyurethane foams based on soybean oil, J. Appl. Polym. Sci., 77, 467, 10.1002/(SICI)1097-4628(20000711)77:2<467::AID-APP25>3.0.CO;2-F
Hejna, 2017, The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams, Ind. Crops Prod., 95, 113, 10.1016/j.indcrop.2016.10.023
Ionescu, 2016
Ji, 2015, Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidized soybean oil with methanol, phenol, and cyclohexanol, Ind. Crops Prod., 74, 76, 10.1016/j.indcrop.2015.04.041
Kirpluks, 2018, Natural oil based highly functional polyols as feedstock for rigid polyurethane foam thermal insulation, Ind. Crops Prod., 122, 627, 10.1016/j.indcrop.2018.06.040
Kurańska, 2014, Environmentally friendly polyurethane-polyisocyanurate foams for applications in the construction industry, Czasopismo techniczne Budownictwo, 5-B, 149
Kurańska, 2016, The influence of rapeseed oil-based polyols on the foaming process of rigid polyurethane foams, Ind. Crops Prod., 89, 182, 10.1016/j.indcrop.2016.05.016
Li, 2013, Controlling polyurethane foam flammability and mechanical behaviour by tailoring the composition of clay-based multilayer nanocoatings, J. Mater. Chem. A, 1, 12987, 10.1039/c3ta11936j
Liszkowska, 2016
Marcovich, 2017, Open cell semi-rigid polyurethane foams synthesized using palm oil-based bio-polyol, Ind Crops Prod., 102, 88, 10.1016/j.indcrop.2017.03.025
Miao, 2012, Soybean oil-based polyurethane networks as candidate biomaterials: synthesis and biocompability, Eur. J. Lipid Sci. Technol., 114, 1165, 10.1002/ejlt.201200050
Miao, 2013, Synthesis of bio-based polyurethanes from epoxidized soybean oil and isopropanolamine, J. Appl. Polym. Sci., 10, 1929, 10.1002/app.37564
Miao, 2013, Soybean oil-based polyurethane networks: shape-memory effects and surface morphologies, J. Am. Oil Chem. Soc., 90, 1415, 10.1007/s11746-013-2273-5
Muggli, 2007, Systemic evening primrose oil for irritated skin care, Cosmet. Toiletries, 122, 49
Noreen, 2016, Bio-based polyurethane: an efficient and environment friendly coating systems: a review, J. Prog. Organ. Coat., 91, 25, 10.1016/j.porgcoat.2015.11.018
Paciorek-Sadowska, 2010, New polyol for production of rigid polyurethane-polyisocyanurate foams, part 2: preparation of rigid polyurethane-polyisocyanurate foams with the new polyol, J. Appl. Polym. Sci., 118, 2250
Paciorek-Sadowska, 2015, Boron-containing fire retardant rigid polyurethane–polyisocyanurate foams: part II – preparation and evaluation, J. Fire Sci., 33, 48, 10.1177/0734904114554385
Paciorek-Sadowska, 2018, New bio-polyol based on white mustard seed oil for rigid PUR-PIR foams, Pol. J. Chem. Technol., 20, 24, 10.2478/pjct-2018-0019
Petrović, 2008, Polyurethanes from vegetable oils, Polym. Rev., 48, 109, 10.1080/15583720701834224
Petrović, 2010, Vegetable oil-based triols from hydroformylated fatty acids and polyurethane elastomers, Eur. J. Lip. Sci. Technol., 1, 97, 10.1002/ejlt.200900087
Pielichowski, 2010
Pielichowski, 2010
Pillai, 2016, Metathesized palm oil polyol for the preparation of improved bio-based rigid and flexible polyurethane foams, Ind Crops Prod., 83, 568, 10.1016/j.indcrop.2015.12.068
Prociak, 2008
Prociak, 2008, Heat-insulating properties of rigid polyurethane foams synthesized with use of vegetable oils - based polyols, Polimery, 53, 195, 10.14314/polimery.2008.195
Prociak, 2014
Prociak, 2017, Rapeseed oil as main component in synthesis of bio-polyurethane-polyisocyanurate porous materials modified with carbon fibers, Polym Test., 59, 478, 10.1016/j.polymertesting.2017.03.006
Prociak, 2018, Effect of bio-polyols with different chemical structures on foaming of polyurethane systems and foam properties, Ind Crops Prod., 120, 262, 10.1016/j.indcrop.2018.04.046
Rojek, 2012, Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams, J. Appl. Polym. Sci., 125, 2936, 10.1002/app.36500
Septevani, 2015, A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam, Ind Crops Prod., 66, 16, 10.1016/j.indcrop.2014.11.053
Vanbesien, 2013, Hydroformylation of vegetable oils and the potential use of hydroformylated fatty acids, Lip. Technol., 25, 175, 10.1002/lite.201300289
Veronese, 2011, Rigid polyurethane foam based on vegetable oil, J. Appl. Polym. Sci., 120, 530, 10.1002/app.33185
Zhan, 2008, A novel biobased resin epoxidized soybean oil modified cyanate ester, Polym. Eng. Sci., 48, 1322, 10.1002/pen.21096
Zhang, 2015, Bio-based polyurethane foam made from compatible blends of vegetable-oil-based polyol and petroleum-based polyol, ACS Sustain. Chem. Eng., 3, 743, 10.1021/acssuschemeng.5b00049
Zhang, 2014, Bio-based shape memory polyurethanes (Bio-SMPUs) with short side chains in the soft segment, J. Mater. Chem. A, 2, 11490, 10.1039/c4ta01640h
Zieleniewska, 2014, Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering, Polym. Degrad. Stab., 108, 241, 10.1016/j.polymdegradstab.2014.03.010