Oculocutaneous albinism

Orphanet Journal of Rare Diseases - Tập 2 Số 1 - 2007
Karen Grønskov1, Jakob Ek1, Karen Bröndum‐Nielsen1
1Kennedy Center. National Research Center for Genetics, visual Impairment and Mental Retardation, Gl. Landevej 7, Glostrup, 2600, Denmark

Tóm tắt

Abstract

Oculocutaneous albinism (OCA) is a group of inherited disorders of melanin biosynthesis characterized by a generalized reduction in pigmentation of hair, skin and eyes. The prevalence of all forms of albinism varies considerably worldwide and has been estimated at approximately 1/17,000, suggesting that about 1 in 70 people carry a gene for OCA. The clinical spectrum of OCA ranges, with OCA1A being the most severe type with a complete lack of melanin production throughout life, while the milder forms OCA1B, OCA2, OCA3 and OCA4 show some pigment accumulation over time. Clinical manifestations include various degrees of congenital nystagmus, iris hypopigmentation and translucency, reduced pigmentation of the retinal pigment epithelium, foveal hypoplasia, reduced visual acuity usually (20/60 to 20/400) and refractive errors, color vision impairment and prominent photophobia. Misrouting of the optic nerves is a characteristic finding, resulting in strabismus and reduced stereoscopic vision. The degree of skin and hair hypopigmentation varies with the type of OCA. The incidence of skin cancer may be increased. All four types of OCA are inherited as autosomal recessive disorders. At least four genes are responsible for the different types of the disease (TYR, OCA2, TYRP1 and MATP). Diagnosis is based on clinical findings of hypopigmentation of the skin and hair, in addition to the characteristic ocular symptoms. Due to the clinical overlap between the OCA forms, molecular diagnosis is necessary to establish the gene defect and OCA subtype. Molecular genetic testing of TYR and OCA2 is available on a clinical basis, while, at present, analysis of TYRP1 and MATP is on research basis only. Differential diagnosis includes ocular albinism, Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, Griscelli syndrome, and Waardenburg syndrome type II. Carrier detection and prenatal diagnosis are possible when the disease causing mutations have been identified in the family. Glasses (possibly bifocals) and dark glasses or photocromic lenses may offer sufficient help for reduced visual activity and photophobia. Correction of strabismus and nystagmus is necessary and sunscreens are recommended. Regular skin checks for early detection of skin cancer should be offered. Persons with OCA have normal lifespan, development, intelligence and fertility.

Từ khóa


Tài liệu tham khảo

Witkop CJ: Albinism: hematologic-storage disease, susceptibility to skin cancer, and optic neuronal defects shared in all types of oculocutaneous and ocular albinism. Ala J Med Sci. 1979, 16: 327-330.

Lee ST, Nicholls RD, Schnur RE, Guida LC, Lu-Kuo J, Spinner NB, Zackai EH, Spritz RA: Diverse mutations of the P gene among African-Americans with type II (tyrosinase-positive) oculocutaneous albinism (OCA2). Hum Mol Genet. 1994, 3: 2047-2051.

King RA, Hearing VJ, Creel DJ, Oetting WS: Albinism. The Metabolic and Molecular bases of inherited Disease. Edited by: Scriver CR, Beaudet AL, Sly WS and Valle D. New York, McGraw-Hill, Inc.; 1995:4353-4392.

Oetting WS, King RA: Molecular basis of albinism: mutations and polymorphisms of pigmentation genes associated with albinism. Hum Mutat. 1999, 13: 99-115. 10.1002/(SICI)1098-1004(1999)13:2<99::AID-HUMU2>3.0.CO;2-C.

Kromberg JG, Jenkins T: Prevalence of albinism in the South African negro. S Afr Med J. 1982, 61: 383-386.

Rooryck C, Roudaut C, Robine E, Musebeck J, Arveiler B: Oculocutaneous albinism with TYRP1 gene mutations in a Caucasian patient. Pigment Cell Research. 2006, 19: 239-242. 10.1111/j.1600-0749.2006.00298.x.

Newton JM, Cohen-Barak O, Hagiwara N, Gardner JM, Davisson MT, King RA, Brilliant MH: Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4. Am J Hum Genet. 2001, 69: 981-988. 10.1086/324340.

Rundshagen U, Zuhlke C, Opitz S, Schwinger E, Kasmann-Kellner B: Mutations in the MATP gene in five German patients affected by oculocutaneous albinism type 4. Hum Mutat. 2004, 23: 106-110. 10.1002/humu.10311.

Inagaki K, Suzuki T, Shimizu H, Ishii N, Umezawa Y, Tada J, Kikuchi N, Takata M, Takamori K, Kishibe M, Tanaka M, Miyamura Y, Ito S, Tomita Y: Oculocutaneous albinism type 4 is one of the most common types of albinism in Japan. Am J Hum Genet. 2004, 74: 466-471. 10.1086/382195.

King RA, Summers CG: Albinism. Dermatol Clin. 1988, 6: 217-228.

Creel D, O'Donnell FE, Witkop CJ: Visual system anomalies in human ocular albinos. Science. 1978, 201: 931-933. 10.1126/science.684419.

Bouzas EA, Caruso RC, Drews-Bankiewicz MA, Kaiser-Kupfer MI: Evoked potential analysis of visual pathways in human albinism. Ophthalmology. 1994, 101: 309-314.

Tomita Y, Takeda A, Okinaga S, Tagami H, Shibahara S: Human oculocutaneous albinism caused by single base insertion in the tyrosinase gene. Biochem Biophys Res Commun. 1989, 164: 990-996. 10.1016/0006-291X(89)91767-1.

Kwon BS, Haq AK, Pomerantz SH, Halaban R: Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc Natl Acad Sci U S A. 1987, 84: 7473-7477. 10.1073/pnas.84.21.7473.

Cooksey CJ, Garratt PJ, Land EJ, Pavel S, Ramsden CA, Riley PA, Smit NP: Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. J Biol Chem. 1997, 272: 26226-26235. 10.1074/jbc.272.42.26226.

The Human Gene Mutation Database at the Institute Medical Genetics in Cardiff: [http://www.hgmd.org/]. 2007

Toyofuku K, Wada I, Valencia JC, Kushimoto T, Ferrans VJ, Hearing VJ: Oculocutaneous albinism types 1 and 3 are ER retention diseases: mutation of tyrosinase or Tyrp1 can affect the processing of both mutant and wild-type proteins. FASEB J. 2001, 15: 2149-2161. 10.1096/fj.01-0216com.

Rinchik EM, Bultman SJ, Horsthemke B, Lee ST, Strunk KM, Spritz RA, Avidano KM, Jong MT, Nicholls RD: A gene for the mouse pink-eyed dilution locus and for human type II oculocutaneous albinism. Nature. 1993, 361: 72-76. 10.1038/361072a0.

Lee ST, Nicholls RD, Jong MT, Fukai K, Spritz RA: Organization and sequence of the human P gene and identification of a new family of transport proteins. Genomics. 1995, 26: 354-363. 10.1016/0888-7543(95)80220-G.

Rosemblat S, Durham-Pierre D, Gardner JM, Nakatsu Y, Brilliant MH, Orlow SJ: Identification of a melanosomal membrane protein encoded by the pink-eyed dilution (type II oculocutaneous albinism) gene. Proc Natl Acad Sci U S A. 1994, 91: 12071-12075. 10.1073/pnas.91.25.12071.

Orlow SJ, Brilliant MH: The pink-eyed dilution locus controls the biogenesis of melanosomes and levels of melanosomal proteins in the eye. Exp Eye Res. 1999, 68: 147-154. 10.1006/exer.1998.0599.

Rosemblat S, Sviderskaya EV, Easty DJ, Wilson A, Kwon BS, Bennett DC, Orlow SJ: Melanosomal defects in melanocytes from mice lacking expression of the pink-eyed dilution gene: correction by culture in the presence of excess tyrosine. Exp Cell Res. 1998, 239: 344-352. 10.1006/excr.1997.3901.

Puri N, Gardner JM, Brilliant MH: Aberrant pH of melanosomes in pink-eyed dilution (p) mutant melanocytes. J Invest Dermatol. 2000, 115: 607-613. 10.1046/j.1523-1747.2000.00108.x.

Manga P, Boissy RE, Pifko-Hirst S, Zhou BK, Orlow SJ: Mislocalization of melanosomal proteins in melanocytes from mice with oculocutaneous albinism type 2. Exp Eye Res. 2001, 72: 695-710. 10.1006/exer.2001.1006.

Toyofuku K, Valencia JC, Kushimoto T, Costin GE, Virador VM, Vieira WD, Ferrans VJ, Hearing VJ: The etiology of oculocutaneous albinism (OCA) type II: the pink protein modulates the processing and transport of tyrosinase. Pigment Cell Res. 2002, 15: 217-224. 10.1034/j.1600-0749.2002.02007.x.

Chen K, Manga P, Orlow SJ: Pink-eyed dilution protein controls the processing of tyrosinase. Mol Biol Cell. 2002, 13: 1953-1964. 10.1091/mbc.02-02-0022..

Ni-Komatsu L, Orlow SJ: Heterologous expression of tyrosinase recapitulates the misprocessing and mistrafficking in oculocutaneous albinism type 2: effects of altering intracellular pH and pink-eyed dilution gene expression. Exp Eye Res. 2006, 82: 519-528. 10.1016/j.exer.2005.08.013.

Boissy RE, Zhao H, Oetting WS, Austin LM, Wildenberg SC, Boissy YL, Zhao Y, Sturm RA, Hearing VJ, King RA, Nordlund JJ: Mutation in and lack of expression of tyrosinase-related protein-1 (TRP-1) in melanocytes from an individual with brown oculocutaneous albinism: a new subtype of albinism classified as "OCA3". Am J Hum Genet. 1996, 58: 1145-1156.

Box NF, Wyeth JR, Mayne CJ, O'Gorman LE, Martin NG, Sturm RA: Complete sequence and polymorphism study of the human TYRP1 gene encoding tyrosinase-related protein 1. Mamm Genome. 1998, 9: 50-53. 10.1007/s003359900678.

Forshew T, Khaliq S, Tee L, Smith U, Johnson CA, Mehdi SQ, Maher ER: Identification of novel TYR and TYRP1 mutations in oculocutaneous albinism. Clin Genet. 2005, 68: 182-184. 10.1111/j.1399-0004.2005.00460.x.

Fukamachi S, Shimada A, Shima A: Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka. Nat Genet. 2001, 28: 381-385. 10.1038/ng584.

Harada M, Li YF, El Gamil M, Rosenberg SA, Robbins PF: Use of an in vitro immunoselected tumor line to identify shared melanoma antigens recognized by HLA-A*0201-restricted T cells. Cancer Res. 2001, 61: 1089-1094.

Inagaki K, Suzuki T, Ito S, Suzuki N, Adachi K, Okuyama T, Nakata Y, Shimizu H, Matsuura H, Oono T, Iwamatsu H, Kono M, Tomita Y: Oculocutaneous albinism type 4: six novel mutations in the membrane-associated transporter protein gene and their phenotypes. Pigment Cell Res. 2006, 19: 451-453. 10.1111/j.1600-0749.2006.00332.x.

Suzuki T, Inagaki K, Fukai K, Obana A, Lee ST, Tomita Y: A Korean case of oculocutaneous albinism type IV caused by a D157N mutation in the MATP gene. British Journal of Dermatology. 2005, 152: 174-175. 10.1111/j.1365-2133.2005.06403.x.

Chaki M, Mukhopadhyay A, Ray K: Determination of variants in the 3'-region of the tyrosinase gene requires locus specific amplification. Hum Mutat. 2005, 26: 53-58. 10.1002/humu.20171.

Fassihi H, Eady RA, Mellerio JE, Ashton GH, Dopping-Hepenstal PJ, Denyer JE, Nicolaides KH, Rodeck CH, McGrath JA: Prenatal diagnosis for severe inherited skin disorders: 25 years' experience. Br J Dermatol. 2006, 154: 106-113. 10.1111/j.1365-2133.2005.07012.x.

Rosenmann E, Rosenmann A, Ne'eman Z, Lewin A, Bejarano-Achache I, Blumenfeld A: Prenatal diagnosis of oculocutaneous albinism type I: review and personal experience. Pediatr Dev Pathol. 1999, 2: 404-414. 10.1007/s100249900143.

O'Donnell FE, Hambrick GW, Green WR, Iliff WJ, Stone DL: X-linked ocular albinism. An oculocutaneous macromelanosomal disorder. Arch Ophthalmol. 1976, 94: 1883-1892.

Bassi MT, Schiaffino MV, Renieri A, De Nigris F, Galli L, Bruttini M, Gebbia M, Bergen AA, Lewis RA, Ballabio A: Cloning of the gene for ocular albinism type 1 from the distal short arm of the X chromosome. Nat Genet. 1995, 10: 13-19. 10.1038/ng0595-13.

Lee ST, Nicholls RD, Bundey S, Laxova R, Musarella M, Spritz RA: Mutations of the P gene in oculocutaneous albinism, ocular albinism, and Prader-Willi syndrome plus albinism. N Engl J Med. 1994, 330: 529-534. 10.1056/NEJM199402243300803.

Hermansky F, Pudlak P: Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: report of two cases with histochemical studies. Blood. 1959, 14: 162-169.

DePinho RA, Kaplan KL: The Hermansky-Pudlak syndrome. Report of three cases and review of pathophysiology and management considerations. Medicine (Baltimore). 1985, 64: 192-202.

Witkop CJ, Nunez BM, Rao GH, Gaudier F, Summers CG, Shanahan F, Harmon KR, Townsend D, Sedano HO, King RA, .: Albinism and Hermansky-Pudlak syndrome in Puerto Rico. Bol Asoc Med P R. 1990, 82: 333-339.

Dimson O, Drolet BA, Esterly NB: Hermansky-Pudlak syndrome. Pediatr Dermatol. 1999, 16: 475-477. 10.1046/j.1525-1470.1999.00122.x.

Chediak MM: [New leukocyte anomaly of constitutional and familial character.]. Rev Hematol. 1952, 7: 362-367.

Fukai K, Ishii M, Kadoya A, Chanoki M, Hamada T: Chediak-Higashi syndrome: report of a case and review of the Japanese literature. J Dermatol. 1993, 20: 231-237.

Mancini AJ, Chan LS, Paller AS: Partial albinism with immunodeficiency: Griscelli syndrome: report of a case and review of the literature. J Am Acad Dermatol. 1998, 38: 295-300. 10.1016/S0190-9622(98)70568-7.

Waardenburg PJ: A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness. Am J Hum Genet. 1951, 3: 195-253.

Kushimoto T, Valencia JC, Costin GE, Toyofuku K, Watabe H, Yasumoto K, Rouzaud F, Vieira WD, Hearing VJ: The Seiji memorial lecture: the melanosome: an ideal model to study cellular differentiation. Pigment Cell Res. 2003, 16: 237-244. 10.1034/j.1600-0749.2003.00034.x.