Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization

Reviews of Geophysics - Tập 32 Số 4 - Trang 363-403 - 1994
William G. Large1, James C. McWilliams1, Scott C. Doney1
1National Center for Atmospheric Research Boulder, Colorado

Tóm tắt

If model parameterizations of unresolved physics, such as the variety of upper ocean mixing processes, are to hold over the large range of time and space scales of importance to climate, they must be strongly physically based. Observations, theories, and models of oceanic vertical mixing are surveyed. Two distinct regimes are identified: ocean mixing in the boundary layer near the surface under a variety of surface forcing conditions (stabilizing, destabilizing, and wind driven), and mixing in the ocean interior due to internal waves, shear instability, and double diffusion (arising from the different molecular diffusion rates of heat and salt). Mixing schemes commonly applied to the upper ocean are shown not to contain some potentially important boundary layer physics. Therefore a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics. It includes a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized. Expressions for diffusivity and nonlocal transport throughout the boundary layer are given. The diffusivity is formulated to agree with similarity theory of turbulence in the surface layer and is subject to the conditions that both it and its vertical gradient match the interior values at h. This nonlocal “K profile parameterization” (KPP) is then verified and compared to alternatives, including its atmospheric counterparts. Its most important feature is shown to be the capability of the boundary layer to penetrate well into a stable thermocline in both convective and wind‐driven situations. The diffusivities of the aforementioned three interior mixing processes are modeled as constants, functions of a gradient Richardson number (a measure of the relative importance of stratification to destabilizing shear), and functions of the double‐diffusion density ratio, Rρ. Oceanic simulations of convective penetration, wind deepening, and diurnal cycling are used to determine appropriate values for various model parameters as weak functions of vertical resolution. Annual cycle simulations at ocean weather station Papa for 1961 and 1969–1974 are used to test the complete suite of parameterizations. Model and observed temperatures at all depths are shown to agree very well into September, after which systematic advective cooling in the ocean produces expected differences. It is argued that this cooling and a steady salt advection into the model are needed to balance the net annual surface heating and freshwater input. With these advections, good multiyear simulations of temperature and salinity can be achieved. These results and KPP simulations of the diurnal cycle at the Long‐Term Upper Ocean Study (LOTUS) site are compared with the results of other models. It is demonstrated that the KPP model exchanges properties between the mixed layer and thermocline in a manner consistent with observations, and at least as well or better than alternatives.

Từ khóa


Tài liệu tham khảo

10.1175/1520-0485(1992)022<1221:TSSLOT>2.0.CO;2

10.1016/0079-6611(93)90019-A

10.1002/qj.49708637005

Berliand M. E., 1952, Measurement of the effective radiation of the Earth with varying cloud amounts, Izv. Acad. Sci. USSR, Ser. Geophys., Engl. Transl.

10.1029/JZ067i008p03095

10.1175/1520-0469(1986)043<1574:OTSOTT>2.0.CO;2

10.1016/0377-0265(84)90011-3

10.1175/1520-0493(1976)104<1122:COSEFA>2.0.CO;2

10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2

10.1175/1520-0469(1973)030<0788:POWATF>2.0.CO;2

10.1017/S0022112076001420

D'Asaro E. A., 1985, Ocean storms‐‐A three‐dimensional, severe storm, air/sea interaction experiment: Overview and core program

10.1175/1520-0485(1985)015<0943:UOTSIC>2.0.CO;2

10.1016/0198-0149(81)90091-1

10.1016/0198-0149(81)90092-3

10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2

10.1017/S0022112070000691

10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2

10.1029/JC077i030p05900

10.1017/S0022112069000942

10.1002/qj.49711447909

Donaldson C., 1973, Workshop on Micrometeorology, 313

Ekman V. W., 1905, On the influence of the Earth's rotation on ocean currents, Ark. Mat. Astron. Fys., 2, 1

10.1029/JC083iC06p02989

Fedorov K. N., 1988, Small‐Scale Turbulence and Mixing in the Ocean, 471

10.1029/RG022i002p00177

10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2

10.1357/002224084788506158

10.1175/1520-0485(1977)007<0455:AOMLMC>2.0.CO;2

10.1175/1520-0485(1988)018<0161:MTSCOT>2.0.CO;2

10.1029/JC095iC09p16179

10.1016/0011-7471(73)90049-1

10.1029/JC092iC05p05249

10.1029/JC094iC07p09686

Haugen D. A., 1973, Workshop on Micrometeorology

10.1098/rspa.1948.0127

10.1007/BF00119875

10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2

10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2

10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2

10.1016/S0422-9894(08)70792-X

10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2

10.1029/94JC02257

10.1016/S0422-9894(08)70566-X

10.1029/JC095iC03p03365

10.1034/j.1600-0870.1992.t01-4-00003.x

10.1017/S0022112079001828

10.1007/BF00153969

10.1111/j.2153-3490.1967.tb01462.x

10.1029/90JC02108

10.1029/JC095iC10p18127

10.1007/BF00119415

Large W. G., 1994, Observations and simulations of upper ocean response to wind events during the Ocean Storms experiment, J. Phys. Oceanogr.

10.1175/1520-0485(1982)012<0464:SALHFM>2.0.CO;2

10.1175/1520-0485(1986)016<1524:UOTRTS>2.0.CO;2

10.1038/364701a0

10.1175/1520-0469(1980)037<1313:MFASMB>2.0.CO;2

10.1029/JC093iC06p06847

Lilly D. K., 1967, The representation of small‐scale turbulence in numerical simulation experiments, Proc. IBM Sci. Comput. Symp. Environ. Sci., 195

10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2

10.1007/BF00117978

10.1029/90JC01951

Lumley J. A., 1964, The Structure of Atmospheric Turbulence

10.1175/1520-0493(1976)104<1403:MLMS>2.0.CO;2

10.1007/BF00122065

10.1175/1520-0469(1982)039<2249:AFEMOT>2.0.CO;2

10.1016/0011-7471(76)90808-1

10.1029/JC090iC01p00903

10.1029/JC092iC07p06977

10.1126/science.263.5144.218

10.1175/1520-0485(1990)020<1349:ALBMOW>2.0.CO;2

McWilliams J. C., 1993, Large‐Eddy Simulations of Complex Engineering and Geophysical Flows, 441

10.21236/ADA215507

10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2

10.1029/RG020i004p00851

10.1175/1520-0469(1984)041<3161:SOCSIT>2.0.CO;2

10.1175/1520-0469(1989)046<2311:EOTTAD>2.0.CO;2

Monin A. S. A. M.Yaglom Statistical Fluid Mechanics 1 769 MIT Press Cambridge Mass. 1971.

10.1029/JC094iC02p02005

10.1007/978-94-010-9112-1

Niiler P. P., 1975, Deepening of the wind mixed layer, J. Mar. Res., 33, 405

Niiler P. P., 1977, Modelling and Prediction of the Upper Layers of the Ocean, 143

10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2

10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2

10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2

10.1029/JC092iC10p10799

10.1175/1520-0485(1986)016<0025:HAEBIT>2.0.CO;2

10.1007/BF02265236

Panofsky H. A., 1984, Atmospheric Turbu lence: Models and methods for Engineering Applications

10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2

10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2

10.1029/JC093iC02p01199

10.1080/03091927208236105

10.1002/zamm.19250050212

10.4319/lo.1986.31.5.0909

10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2

10.1029/JC091iC07p08411

10.1029/JC092iC13p14480

Resnyanskiy Y. D., 1975, Parameterization of the integral turbulent energy dissipation in the upper quasihomogeneous layer of the ocean, Izv. Acad. Sci. USSR Atmos. Oceanic Phys., Engl. Transl., 11, 453

10.1007/BF01053472

10.1175/1520-0485(1981)011<1015:FOTTSR>2.0.CO;2

10.1016/S0422-9894(08)70563-4

10.1175/1520-0485(1990)020<0900:OTDRBI>2.0.CO;2

10.1002/qj.49710544412

10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

10.1080/07055900.1984.9649181

10.1175/1520-0485(1983)013<1894:UOHBDT>2.0.CO;2

10.1175/1520-0485(1986)016<0827:LDSSTV>2.0.CO;2

10.1175/1520-0469(1984)041<3351:TTTPIT>2.0.CO;2

10.1007/978-94-009-3027-8

Tabata S., 1965, Variability of oceanographic conditions at ocean station P in the northeast Pacific Ocean, Trans. R. Soc. Canada, 367

10.1175/1520-0469(1973)030<0234:TLWP>2.0.CO;2

10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2

Tricot C. Estimation des flux chaleur en surface à la station météo‐océanographique PapaSci. Rep. 1985/9Inst. d'Astron. et de Geophys. G. Lemaître Univ. Cath. de Louvain Louvain‐La‐Neuve Belgium 1985.

10.1007/BF00122760

10.1016/0017-9310(65)90022-0

10.1017/CBO9780511608827

10.1016/0198-0149(88)90027-1

10.1126/science.227.4694.1552

10.1002/qj.49710544403

Wyngaard J. C., 1982, Mesoscale Meteorology—Theories, Observations and Models, NATO ASI, Ser., Ser. C

10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2

10.1175/1520-0469(1976)033<1974:MBDML>2.0.CO;2