Sự phân hủy occludin và collagen IV do tác nhân T9SS SspA gây ra góp phần vào tổn thương hàng rào máu-não ở vịt trong quá trình nhiễm Riemerella anatipestifer

Zongchao Chen1, Min Zhu2, Dan Liú2, Meng-Si Wu2, Pei Niu2, Yang Yu1, Chan Ding2, Shuang Yu3
1Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
2Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
3Yangzhou You-Jia-Chuang Biotechnology Co., Ltd., Yangzhou, China

Tóm tắt

Nhiễm trùng Riemerella anatipestifer được đặc trưng bởi viêm màng não với các triệu chứng thần kinh ở vịt con và đã ảnh hưởng tiêu cực đến ngành chăn nuôi gia cầm. Các chủng R. anatipestifer có thể xâm nhập vào não vịt để gây ra viêm màng não và triệu chứng thần kinh, nhưng cơ chế cơ bản vẫn chưa được biết. Trong nghiên cứu này, chúng tôi đã cho thấy triệu chứng lâm sàng rõ rệt, sự gia tăng tính thấm của hàng rào máu-não (BBB) và sự tích tụ của các cytokine viêm xảy ra sau khi nhiễm trùng tĩnh mạch với chủng Yb2 nhưng không phải chủng đột biến Yb2ΔsspA, cho thấy rằng nhiễm trùng Yb2 có thể dẫn đến rối loạn chức năng mạch máu não và rằng hệ thống tiết loại IX (T9SS) tác nhân SspA đóng vai trò quan trọng trong quá trình bệnh lý này. Thêm vào đó, chúng tôi đã cho thấy rằng nhiễm trùng Yb2 dẫn đến sự phân hủy nhanh chóng của occludin (một protein liên kết chặt chẽ) và collagen IV (một protein màng nền), điều này góp phần vào sự phá vỡ hàng rào nội mô. Sự tương tác giữa SspA và occludin đã được xác nhận qua sự đồng kết tủa miễn dịch. Hơn nữa, chúng tôi phát hiện rằng SspA là enzyme chính trung gian cho sự phân hủy occludin và collagen IV. Những dữ liệu này cho thấy rằng R. anatipestifer SspA trung gian cho sự phân hủy occludin và collagen IV, dẫn đến sự phá vỡ hàng rào máu-não ở vịt bị nhiễm R. anatipestifer. Những phát hiện này thiết lập cơ chế phân tử mà R. anatipestifer nhắm vào các liên kết tế bào nội mô của vịt con và cung cấp những góc nhìn mới cho việc điều trị và phòng ngừa nhiễm trùng R. anatipestifer.

Từ khóa

#Riemerella anatipestifer #occludin #collagen IV #hàng rào máu-não #nhiễm trùng vịt

Tài liệu tham khảo

Wang X, Liu B, Dou Y, Fan H, Wang S, Li T, Ding C, Yu S (2016) The Riemerella anatipestifer AS87_01735 gene encodes nicotinamidase PncA, an important virulence factor. Appl Environ Microbiol 82:5815–5823

Li D, Wang X, Xu X, Gu J, Yang Y, Liu T, Wang S, Chen S, Li J (2021) Duck complement factor H binds to outer membrane protein Omp24 of Riemerella anatipestifer. Avian Dis 65:261–268

Xihui Z, Yanlan L, Zhiwei W, Zheyu P, Zhenshu S, Cheng L, Jianbiao L, Shengliang C, Lanying P, Yubao L (2022) Antibiotic resistance of Riemerella anatipestifer and comparative analysis of antibiotic-resistance gene detection methods. Poult Sci 102:102405

Pizza M, Rappuoli R (2015) Neisseria meningitidis: pathogenesis and immunity. Curr Opin Microbiol 23:68–72

Bernard SC, Simpson N, Join-Lambert O, Federici C, Laran-Chich MP, Maissa N, Bouzinba-Segard H, Morand PC, Chretien F, Taouji S, Chevet E, Janel S, Lafont F, Coureuil M, Segura A, Niedergang F, Marullo S, Couraud PO, Nassif X, Bourdoulous S (2014) Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization. Nat Med 20:725–731

Coureuil M, Lecuyer H, Bourdoulous S, Nassif X (2017) A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 15:149–159

Campos-Bedolla P, Walter FR, Veszelka S, Deli MA (2014) Role of the blood-brain barrier in the nutrition of the central nervous system. Arch Med Res 45:610–638

Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harbor Perspect Biol 7:a020412

He Y, Yao Y, Tsirka SE, Cao Y (2014) Cell-culture models of the blood-brain barrier. Stroke 45:2514–2526

Paris L, Tonutti L, Vannini C, Bazzoni G (2008) Structural organization of the tight junctions. Biochim Biophys Acta 1778:646–659

Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209:139–151

Baeten KM, Akassoglou K (2011) Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol 71:1018–1039

Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27

Gorasia DG, Veith PD, Reynolds EC (2020) The type IX secretion system: advances in structure, function and organisation. Microorganisms 8:1173

McBride MJ, Zhu Y (2020) Gliding motility and Por secretion system genes are widespread among members of the phylum bacteroidetes. J Bacteriol 195:270–278

Chen Z, Wang X, Ren X, Han W, Malhi KK, Ding C, Yu S (2019) Riemerella anatipestifer GldM is required for bacterial gliding motility, protein secretion, and virulence. Vet Res 50:43

Chen Z, Han W, Zhu M, Liu D, Niu P, Shen R, Ding C, Yu S (2023) Riemerella anatipestifer GldG is necessary for secretion of effectors by type IX secretion system. Vet Microbiol 276:109628

Zhu M, Chen Z, Shen R, Niu P, Feng Y, Liu D, Yu S (2022) Riemerella anatipestifer AS87_RS02955 acts as a virulence factor and displays endonuclease activity. Appl Environ Microbiol 88:e0127622

Niu P, Chen Z, Ren X, Han W, Dong H, Shen R, Ding C, Zhu S, Yu S (2021) A Riemerella anatipestifer metallophosphoesterase that displays phosphatase activity and is associated with virulence. Appl Environ Microbiol 87:e00086-21

Chen Z, Niu P, Ren X, Han W, Shen R, Zhu M, Yu Y, Ding C, Yu S (2022) Riemerella anatipestifer T9SS effector SspA functions in bacterial virulence and defending natural host immunity. Appl Environ Microbiol 88:e0240921

Chen Z, Niu P, Ren X, Han W, Shen R, Zhu M, Yu Y, Yu S (2022) Genome-wide analysis and characterization of the Riemerella anatipestifer putative T9SS secretory proteins with a conserved C-terminal domain. J Bacteriol 204:e0007322

Wang X, Ding C, Wang S, Han X, Hou W, Yue J, Zou J, Yu S (2014) The AS87_04050 gene is involved in bacterial lipopolysaccharide biosynthesis and pathogenicity of Riemerella anatipestifer. PLoS One 9:e109962

Baskaya MK, Dogan A, Rao AM, Dempsey RJ (2000) Neuroprotective effects of citicoline on brain edema and blood-brain barrier breakdown after traumatic brain injury. J Neurosurg 92:448–452

Coureuil M, Mikaty G, Miller F, Lecuyer H, Bernard C, Bourdoulous S, Dumenil G, Mege RM, Weksler BB, Romero IA, Couraud PO, Nassif X (2009) Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science 325:83–87

Liu R, Li WY, Meng Y, Zhou H, Yu J, Ma Z, Fan HJ (2018) The serine/threonine protein kinase of Streptococcus suis serotype 2 affects the ability of the pathogen to penetrate the blood-brain barrier. Cell Microbiol 20:e12862

Vanier G, Fittipaldi N, Slater JD, de la Cruz D-P, Rycroft AN, Segura M, Maskell DJ, Gottschalk M (2009) New putative virulence factors of Streptococcus suis involved in invasion of porcine brain microvascular endothelial cells. Microb Pathog 46:13–20

Verma S, Lo Y, Chapagain M, Lum S, Kumar M, Gurjav U, Luo HY, Nakatsuka A, Nerurkar VR (2009) West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier. Virology 385:425–433

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

Liu WL, Furuichi T, Miyake M, Rosenberg GA, Liu KJ (2007) Differential expression of tissue inhibitor of metalloproteinases-3 in cultured astrocytes and neurons regulates the activation of matrix metalloproteinase-2. J Neurosci Res 85:829–836

Yang S, Huang YF, Shi YH, Bai XB, Yang P, Chen QS (2021) Tembusu virus entering the central nervous system caused nonsuppurative encephalitis without disrupting the blood-brain barrier. J Virol 95:e02191-e2220

Xu L, Nirwane A, Yao Y (2019) Basement membrane and blood-brain barrier. Stroke Vasc Neurol 4:78–82

Maisey HC, Doran KS, Nizet V (2008) Recent advances in understanding the molecular basis of group B Streptococcus virulence. Expert Rev Mol Med 10:e27

Kim KS (2016) Human meningitis-associated Escherichia coli. EcoSal Plus 7:10.1128/ecosalplus.ESP-0015-2015

Be NA, Kim KS, Bishai WR, Jain SK (2009) Pathogenesis of central nervous system tuberculosis. Curr Mol Med 9:94–99

Soyer M, Charles-Orszag A, Lagache T, Machata S, Imhaus AF, Dumont A, Millien C, Olivo-Marin JC, Dumenil G (2014) Early sequence of events triggered by the interaction of Neisseria meningitidis with endothelial cells. Cell Microbiol 16:878–895

Liu W, Hendren J, Qin XJ, Shen J, Liu KJ (2009) Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 108:811–820

Banerjee A, Kim BJ, Carmona EM, Cutting AS, Gurney MA, Carlos C, Feuer R, Prasadarao NV, Doran KS (2011) Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat Commun 2:462

Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435–438

Kim KS (2008) Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol 6:625–634

Li S, Gong X, Chen Q, Zheng F, Ji G, Liu Y (2018) Threshold level of Riemerella anatipestifer crossing blood-brain barrier and expression profiles of immune-related proteins in blood and brain tissue from infected ducks. Vet Immunol Immunopathol 200:26–31

Forster C (2008) Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 130:55–70

Hoshi O, Ushiki T (2004) Neutrophil extravasation in rat mesenteric venules induced by the chemotactic peptide N-formyl-methionyl-luecylphenylalanine (fMLP), with special attention to a barrier function of the vascular basal lamina for neutrophil migration. Arch Histol Cytol 67:107–114

Jeanne M, Jorgensen J, Gould DB (2015) Molecular and genetic analyses of collagen type IV mutant mouse models of spontaneous intracerebral hemorrhage identify mechanisms for stroke prevention. Circulation 131:1555–1565

Favor J, Gloeckner CJ, Janik D, Klempt M, Neuhauser-Klaus A, Pretsch W, Schmahl W, Quintanilla-Fend L (2007) Type IV procollagen missense mutations associated with defects of the eye, vascular stability, the brain, kidney function and embryonic or postnatal viability in the mouse, Mus musculus: an extension of the Col4a1 allelic series and the identification of the first two Col4a2 mutant alleles. Genetics 175:725–736

Kuo DS, Labelle-Dumais C, Mao M, Jeanne M, Kauffman WB, Allen J, Favor J, Gould DB (2014) Allelic heterogeneity contributes to variability in ocular dysgenesis, myopathy and brain malformations caused by Col4a1 and Col4a2 mutations. Hum Mol Genet 23:1709–1722

Mukherjee DV, Tonry JH, Kim KS, Ramarao N, Popova TG, Bailey C, Popov S, Chung MC (2011) Bacillus anthracis protease InhA increases blood-brain barrier permeability and contributes to cerebral hemorrhages. PLoS One 6:e17921

Leppert D, Lindberg RL, Kappos L, Leib SL (2001) Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res Brain Res Rev 36:249–257

Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, Liu R, Chen W, Tong W, Wei Q, Xu Y, Deng W, Gao H, Xue J, Song Z, Yu P, Han Y, Zhang Y, Sun X, Yu X, Qin C (2021) SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther 6:337

Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732

Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709

ElAli A, Doeppner TR, Zechariah A, Hermann DM (2011) Increased blood-brain barrier permeability and brain edema after focal cerebral ischemia induced by hyperlipidemia: role of lipid peroxidation and calpain-1/2, matrix metalloproteinase-2/9, and RhoA overactivation. Stroke 42:3238–3244

Liu J, Jin X, Liu KJ, Liu W (2012) Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci 32:3044–3057

Peng X, Luo Z, He S, Zhang L, Li Y (2021) Blood-brain barrier disruption by lipopolysaccharide and sepsis-associated encephalopathy. Front Cell Infect Microbiol 11:768108

Kim KS (2003) Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 4:376–385

Doran KS, Liu GY, Nizet V (2003) Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest 112:736–744

Deng L, Mu R, Weston TA, Spencer BL, Liles RP, Doran KS (2018) Characterization of a two-component system transcriptional regulator, LtdR, that impacts group B Streptococcal colonization and disease. Infect Immun 86:e00822-e917

Brouwer MC, McIntyre P, Prasad K, van de Beek D (2015) Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev 9:CD004405

Chang YC, Olson J, Beasley FC, Tung C, Zhang J, Crocker PR, Varki A, Nizet V (2014) Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog 10:e1003846

Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B (2011) Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37:24–39

Kumar V (2019) Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 332:16–30