Obtaining a fused PLA-calcium phosphate-tobramycin-based filament for 3D printing with potential antimicrobial application
Tóm tắt
Many efforts in the tissue engineering field have been devoted to producing biomedical devices with several physico-chemical properties that could promote an increase in the quality of therapeutic treatments. Thus, 3D printing is an efficient method which facilitates manufacturing high quality products to be used as medical devices. However, high-performance materials are required for obtaining products that are able to be 3D printed to attend the biomedical concerns. In this work, fused PLA-calcium phosphate-tobramycin-based filaments with antimicrobial properties were produced. X-ray powder diffraction, Fourier transform infrared spectroscopy and thermal analysis were performed to characterize the pure compounds as well as the composite filaments, revealing that the drug is preserved into the filaments by the implemented methodology, even after the hot extrusion procedure. The filaments and the printed pieces presented great antimicrobial effect and a controlled-release profile was also observed by the drug-release assays for the filaments produced, thereby indicating this material as a promising candidate to be used for implantable medical devices in the future.
Tài liệu tham khảo
C. Wang, W. Huang, Y. Zhou, L. He, Z. He, Z. Chen, X. He, S. Tian, J. Liao, B. Lu, Y. Wei, M. Wang, 3D printing of bone tissue engineering scaffolds. Bioact. Mater. 5, 82–91 (2020). https://doi.org/10.1016/j.bioactmat.2020.01.004
S. Yuan, S. Li, J. Zhu, Y. Tang, Additive manufacturing of polymeric composites from material processing to structural design. Compos. B Eng. 219, 108903 (2021). https://doi.org/10.1016/J.COMPOSITESB.2021.108903
S. Radhakrishnan, S. Nagarajan, H. Belaid, C. Farha, I. Iatsunskyi, E. Coy, L. Soussan, V. Huon, J. Bares, K. Belkacemi, C. Teyssier, S. Balme, P. Miele, D. Cornu, N. Kalkura, V. Cavaillès, M. Bechelany, Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. Mater. Sci. Eng., C 118, 111525 (2021). https://doi.org/10.1016/j.msec.2020.111525
L. Viidik, J. Vesala, R. Laitinen, O. Korhonen, J. Ketolainen, J. Aruväli, K. Kirsimäe, K. Kogermann, J. Heinämäki, I. Laidmäe, T. Ervasti, Preparation and characterization of hot-melt extruded polycaprolactone-based filaments intended for 3D-printing of tablets. Eur. J. Pharm. Sci. 158, 105619 (2021). https://doi.org/10.1016/J.EJPS.2020.105619
S.K. Hedayati, A.H. Behravesh, S. Hasannia, O. Kordi, M. Pourghaumi, A.B. Saed, F. Gashtasbi, Additive manufacture of PCL/nHA scaffolds reinforced with biodegradable continuous Fibers: mechanical properties, in-vitro degradation profile, and cell study. Eur. Polymer J. 162, 110876 (2022). https://doi.org/10.1016/J.EURPOLYMJ.2021.110876
R. Tylingo, P. Kempa, A. Banach-Kopeć, S. Mania, A novel method of creating thermoplastic chitosan blends to produce cell scaffolds by FDM additive manufacturing. Carbohyd. Polym. 280, 119028 (2022). https://doi.org/10.1016/J.CARBPOL.2021.119028
M. Calì, G. Pascoletti, M. Gaeta, G. Milazzo, R. Ambu, New filaments with natural fillers for FDM 3D printing and their applications in biomedical field. Procedia Manuf. 51, 698–703 (2020). https://doi.org/10.1016/J.PROMFG.2020.10.098
M. Olam, N. Tosun, 3D-printed polylactide/hydroxyapatite/titania composite filaments. Mater. Chem. Phys. 276, 125267 (2022). https://doi.org/10.1016/J.MATCHEMPHYS.2021.125267
J.D. Caplin, A.J. García, Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 93, 2–11 (2019). https://doi.org/10.1016/J.ACTBIO.2019.01.015
A.F. Widmer, New developments in diagnosis and treatment of infection in orthopedic implants. Clin. Infect. Dis. 33, S94–S106 (2001). https://doi.org/10.1086/321863
R. Teixeira-Santos, M. Lima, L.C. Gomes, F.J. Mergulhão, Antimicrobial coatings based on chitosan to prevent implant-associated infections: A systematic review. IScience. 24, 103480 (2021). https://doi.org/10.1016/J.ISCI.2021.103480
R. Scaffaro, A. Maio, L. Botta, E.F. Gulino, D. Gulli, Tunable release of chlorhexidine from polycaprolactone-based filaments containing graphene nanoplatelets. Eur. Polymer J. 110, 221–232 (2019). https://doi.org/10.1016/J.EURPOLYMJ.2018.11.031
V. Martin, I.A. Ribeiro, M.M. Alves, L. Gonçalves, R.A. Claudio, L. Grenho, M.H. Fernandes, P. Gomes, C.F. Santos, A.F. Bettencourt, Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater. Sci. Eng., C 101, 15–26 (2019). https://doi.org/10.1016/J.MSEC.2019.03.056
J.J. Water, A. Bohr, J. Boetker, J. Aho, N. Sandler, H.M. Nielsen, J. Rantanen, Three-dimensional printing of drug-eluting implants: Preparation of an antimicrobial polylactide feedstock material. J Pharm Sci. 104, 1099–1107 (2015). https://doi.org/10.1002/JPS.24305
M.A. Rosasco, S.L. Bonafede, S.N. Faudone, A.I. Segall, Compatibility study of tobramycin and pharmaceutical excipients using differential scanning calorimetry, FTIR, DRX, and HPLC. J. Therm. Anal. Calorim. 134, 1929–1941 (2018). https://doi.org/10.1007/S10973-018-7282-Z
M. Loose, K.G. Naber, P. Shields, H. Reinhart, F.M.E. Wagenlehner, Urinary concentrations and antimicrobial activity of tobramycin in healthy volunteers receiving a single oral dose of a novel formulation for improved absorption. Int. J. Antimicrob. Agents 51, 422–426 (2018). https://doi.org/10.1016/J.IJANTIMICAG.2017.11.004
S. Khan, S. Warade, D.J. Singhavi, Improvement in ocular bioavailability and prolonged delivery of tobramycin sulfate following topical ophthalmic administration of drug-loaded mucoadhesive microparticles incorporated in thermosensitive in situ gel. J. Ocul. Pharmacol. Ther. 34, 287–297 (2018). https://doi.org/10.1089/JOP.2017.0079
D.K. Mills, U. Jammalamadaka, K. Tappa, J. Weisman, Studies on the cytocompatibility, mechanical and antimicrobial properties of 3D printed poly(methyl methacrylate) beads. Bioact. Mater. 3, 157–166 (2018). https://doi.org/10.1016/J.BIOACTMAT.2018.01.006
G.A. Lulu, A. Karunanidhi, L. Mohamad Yusof, Y. Abba, F. Mohd Fauzi, F. Othman, In vivo efficacy of tobramycin-loaded synthetic calcium phosphate beads in a rabbit model of staphylococcal osteomyelitis. Ann. Clin. Microbiol. Antimicrob. 17, 1–11 (2018)
J.Y. Ferguson, M. Dudareva, N.D. Riley, D. Stubbs, B.L. Atkins, M.A. McNally, The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases. Bone Joint J. 96, 829–836 (2014)
M. Hill, R.N. Cunningham, R.M. Hathout, C. Johnston, J.G. Hardy, M.E. Migaud, Formulation of antimicrobial tobramycin loaded PLGA nanoparticles via complexation with AOT. J Funct Biomater. 10, 26 (2019)
F.H. Allen, The cambridge structural database: A quarter of a million crystal structures and rising. Urn: Issn 58, 380–388 (2002). https://doi.org/10.1107/S0108768102003890
S.K. Lan Levengood, S.J. Polak, M.B. Wheeler, A.J. Maki, S.G. Clark, R.D. Jamison, A.J. Wagoner Johnson, Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 31, 3552–3563 (2010). https://doi.org/10.1016/J.BIOMATERIALS.2010.01.052
B. Mohapatra, T.R. Rautray, Strontium-substituted biphasic calcium phosphate scaffold for orthopedic applications. J. Korean Ceram. Soc. 57, 392–400 (2020). https://doi.org/10.1007/S43207-020-00028-X
M. Castilho, C. Moseke, A. Ewald, U. Gbureck, J. Groll, I. Pires, J. Teßmar, E. Vorndran, Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6, 015006 (2014). https://doi.org/10.1088/1758-5082/6/1/015006
P. Nevado, A. Lopera, V. Bezzon, M.R. Fulla, J. Palacio, M.A. Zaghete, G. Biasotto, A. Montoya, J. Rivera, S.M. Robledo, H. Estupiñan, C. Paucar, C. Garcia, Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds. Mater. Sci. Eng., C 114, 111013 (2020). https://doi.org/10.1016/J.MSEC.2020.111013
C. Yang, O. Unursaikhan, J. Lee, U. Jung, C. Kim, S. Choi, Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits. J. Biomed. Mater. Res. Part B: Appl. Biomater. 102, 80–88 (2014)
E.-U. Lee, D.-J. Kim, H.-C. Lim, J.-S. Lee, U.-W. Jung, S.-H. Choi, Comparative evaluation of biphasic calcium phosphate and biphasic calcium phosphate collagen composite on osteoconductive potency in rabbit calvarial defect. Biomater. Res. 19, 1–7 (2015)
H.-C. Lim, M.-L. Zhang, J.-S. Lee, U.-W. Jung, S.-H. Choi, Effect of different hydroxyapatite: β-tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model. Int. J. Oral. Maxillofac. Implants. 30, 65–72 (2015)
A. Piattelli, A. Scarano, C. Mangano, Clinical and histologic aspects of biphasic calcium phosphate ceramic (BCP) used in connection with implant placement. Biomaterials 17, 1767–1770 (1996)
J.-M. Bouler, P. Pilet, O. Gauthier, E. Verron, Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 53, 1–12 (2017)
S.E. Kim, K. Park, Recent advances of biphasic calcium phosphate bioceramics for bone tissue regeneration. Biomimicked. Biomater. (2020). https://doi.org/10.1007/978-981-15-3262-7_12
F. Oberdiek, C.I. Vargas, P. Rider, M. Batinic, O. Görke, M. Radenković, S. Najman, J.M. Baena, O. Jung, M. Barbeck, Ex vivo and in vivo analyses of novel 3d-printed bone substitute scaffolds incorporating biphasic calcium phosphate granules for bone regeneration. Int. J. Mol. Sci. 22, 3588 (2021)
Y.W. Seo, J.Y. Park, D.N. Lee, X. Jin, J.K. Cha, J.W. Paik, S.H. Choi, 3-D Printed BCP blocks with different pore sizes for regeneration in rabbit calvarial defects. Res. Sq. (2022). https://doi.org/10.21203/rs.3.rs-1437572/v1
V. Wall, T.-H. Nguyen, N. Nguyen, P.A. Tran, Controlling antibiotic release from polymethylmethacrylate bone cement. Biomedicines. 9, 26 (2021)
K.C. Patil, Chemistry of nanocrystalline oxide materials: combustion synthesis, properties and applications (World Scientific, 2008)
C. Esposito Corcione, F. Scalera, F. Gervaso, F. Montagna, A. Sannino, A. Maffezzoli, One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing. J. Therm. Anal. Calorim. 134, 575–582 (2018). https://doi.org/10.1007/s10973-018-7155-5
H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. Urn: Issn 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558
A.A. Coelho, TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. Urn: Issn 51, 210–218 (2018). https://doi.org/10.1107/S1600576718000183
S. He, Q. Chen, Y. Sun, Y. Zhu, L. Luo, J. Li, Y. Cao, Determination of tobramycin in soil by HPLC with ultrasonic-assisted extraction and solid-phase extraction. J. Chromatogr. B 879, 901–907 (2011). https://doi.org/10.1016/J.JCHROMB.2011.02.042
R.D. Ventura, A.R. Padalhin, B. Kim, M.K. Park, B.T. Lee, Evaluation of bone regeneration potential of injectable extracellular matrix (ECM) from porcine dermis loaded with biphasic calcium phosphate (BCP) powder. Mater. Sci. Eng., C 110, 110663 (2020). https://doi.org/10.1016/J.MSEC.2020.110663
E.Y. Gómez-Pachón, R. Vera-Graziano, R.M. Campos, Structure of poly(lactic-acid) PLA nanofibers scaffolds prepared by electrospinning IOP conference series. Mater. Sci. Eng. 59, 012003 (2014). https://doi.org/10.1088/1757-899X/59/1/012003
A.K. Dash, Tobramycin. Anal. Profiles. Drug Subst. Excip. 24, 579–613 (1996). https://doi.org/10.1016/S0099-5428(08)60703-0
G.S. Pawley, Unit-cell refinement from powder diffraction scans. Urn: Issn 14, 357–361 (1981). https://doi.org/10.1107/S0021889881009618
A.K. Dash, R. Suryanarayanan, Solid-state properties of tobramycin. Pharm. Res. 8, 1159–1165 (1991). https://doi.org/10.1023/A:1015858503031
P. Maróti, B. Kocsis, A. Ferencz, M. Nyitrai, D. Lőrinczy, Differential thermal analysis of the antibacterial effect of PLA-based materials planned for 3D printing. J. Therm. Anal. Calorim. 139, 367–374 (2020). https://doi.org/10.1007/S10973-019-08377-4/FIGURES/5
T. Tang, T. Shi, K. Qian, P. Li, J. Li, Y. Cao, Determination of biogenic amines in beer with pre-column derivatization by high performance liquid chromatography. J. Chromatogr. B 877, 507–512 (2009). https://doi.org/10.1016/J.JCHROMB.2008.12.064
T. Shi, T. Tang, K. Qian, F. Wang, J. Li, Y. Cao, High-performance liquid chromatographic method for determination of amino acids by precolumn derivatization with 4-chloro-3,5-dinitrobenzotrifluoride. Anal. Chim. Acta 654, 154–161 (2009). https://doi.org/10.1016/J.ACA.2009.09.027
J.M.C. de Assis, E.J. Barbosa, V.D.N. Bezzon, F.R. Lourenço, F.M.S. Carvalho, J.R. Matos, N. Araci Bou-Chacra, C.J. Benmore, S.R. Byrn, F.N. Costa, G.L.B. de Araujo, Hot-melt extrudability of amorphous solid dispersions of flubendazole-copovidone: An exploratory study of the effect of drug loading and the balance of adjuvants on extrudability and dissolution. Int. J. Pharm. 614, 121456 (2022). https://doi.org/10.1016/J.IJPHARM.2022.121456