Obstructive Sleep Apnea and Cancer: Insights from Intermittent Hypoxia Experimental Models
Tóm tắt
This review will provide an updated perspective of the relationship between obstructive sleep apnea (OSA) based on the latest experimental research carried out on animal models subjected to chronic intermittent hypoxia (IH) as a subrogate of OSA. During the last years, new research linking IH and cancer has emerged. The most recent studies have (1) increased the number of types of tumor investigated in response to IH and (2) explored some of the potential mechanisms modulated by IH which could participate in the increased cancer incidence and malignancy reported under this challenge. There are increasing evidences showing that IH mimicking OSA increases tumor incidence, malignancy, and mortality in mice. The mechanisms explored to date are related to the induction of hypoxia-inducible factors, inflammatory and oxidative stress markers, angiogenesis, and IH-induced alterations on the immune system (macrophages and lymphocytes).
Tài liệu tham khảo
Liu Y, Song X, Wang X, et al. Effect of chronic intermittent hypoxia on biological behavior and hypoxia-associated gene expression in lung cancer cells. J Cell Biochem. 2010;111(3):554–63. doi:10.1002/jcb.22739.
Lewis C, Murdoch C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol. 2005;167(3):627–35. doi:10.1016/S0002-9440(10)62038-X.
Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33(4):207–14. doi:10.1016/j.tips.2012.01.005.
Rofstad EK, Galappathi K, Mathiesen B, Ruud EB. Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res. 2007;13(7):1971–8. doi:10.1158/1078-0432.CCR-06-1967.
Hsieh CH, Lee CH, Liang JA, Yu CY, Shyu WC. Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and long-term HIF-1 signal transduction activity. Oncol Rep. 2010;24(6):1629–36. doi:10.3892/or_00001027.
Brurberg KG, Benjaminsen IC, Dorum LM, Rofstad EK. Fluctuations in tumor blood perfusion assessed by dynamic contrast-enhanced MRI. Magn Reson Med. 2007;58(3):473–81. doi:10.1002/mrm.21367.
Kimura H, Braun RD, Ong ET, et al. Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res. 1996;56(23):5522–8.
Dewhirst MW, Kimura H, Rehmus SW, et al. Microvascular studies on the origins of perfusion-limited hypoxia. Br J Cancer Suppl. 1996;27:S247–51.
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83–92. doi:10.2147/HP.S93413. Recent review about the well-known effects of hypoxia in cancer.
Matsumoto S, Yasui H, Mitchell JB, Krishna MC. Imaging cycling tumor hypoxia. Cancer Res. 2010;70(24):10019–23. doi:10.1158/0008-5472.CAN-10-2821.
Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. 2008;8(6):425–37. doi:10.1038/nrc2397.
Toffoli S, Michiels C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J. 2008;275(12):2991–3002. doi:10.1111/j.1742-4658.2008.06454.x.
Cairns RA, Kalliomaki T, Hill RP. Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res. 2001;61(24):8903–8.
Rofstad EK, Gaustad JV, Egeland TA, Mathiesen B, Galappathi K. Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer. 2010;127(7):1535–46. doi:10.1002/ijc.25176.
Martinive P, Defresne F, Bouzin C, et al. Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer Res. 2006;66(24):11736–44. doi:10.1158/0008-5472.CAN-06-2056.
Chan N, Koritzinsky M, Zhao H, et al. Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. Cancer Res. 2008;68(2):605–14. doi:10.1158/0008-5472.CAN-07-5472.
Kondo A, Safaei R, Mishima M, Niedner H, Lin X, Howell SB. Hypoxia-induced enrichment and mutagenesis of cells that have lost DNA mismatch repair. Cancer Res. 2001;61(20):7603–7.
Luoto KR, Kumareswaran R, Bristow RG. Tumor hypoxia as a driving force in genetic instability. Genome Integr. 2013;4(1):5. doi:10.1186/2041-9414-4-5.
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447–54.
Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32. doi:10.1038/nrc1187.
Minet E, Arnould T, Michel G, et al. ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett. 2000;468(1):53–8.
Koong AC, Chen EY, Giaccia AJ. Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res. 1994;54(6):1425–30.
Almendros I, Wang Y, Gozal D. The polymorphic and contradictory aspects of intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol. 2014;307(2):L129–40. doi:10.1152/ajplung.00089.2014. Importance of frecuency and magnitude of IH on its detrimental effects.
Ruehland WR, Rochford PD, O’Donoghue FJ, Pierce RJ, Singh P, Thornton AT. The new AASM criteria for scoring hypopneas: impact on the apnea hypopnea index. Sleep. 2009;32(2):150–7.
Quintero M, Gonzalez-Martin MC, Vega-Agapito V, et al. The effects of intermittent hypoxia on redox status, NF-kappaB activation, and plasma lipid levels are dependent on the lowest oxygen saturation. Free Radic Biol Med. 2013;65:1143–54. doi:10.1016/j.freeradbiomed.2013.08.180.
Lavie L. Intermittent hypoxia: the culprit of oxidative stress, vascular inflammation and dyslipidemia in obstructive sleep apnea. Expert Rev Respir Med. 2008;2(1):75–84. doi:10.1586/17476348.2.1.75.
Gozal D, Kheirandish-Gozal L, Bhattacharjee R, Kim J. C-reactive protein and obstructive sleep apnea syndrome in children. Front Biosci (Elite Ed). 2012;4:2410–22.
Gozal D, Lipton AJ, Jones KL. Circulating vascular endothelial growth factor levels in patients with obstructive sleep apnea. Sleep. 2002;25(1):59–65.
Lurie A. Inflammation, oxidative stress, and procoagulant and thrombotic activity in adults with obstructive sleep apnea. Adv Cardiol. 2011;46:43–66. doi:10.1159/000325105.
Lin QC, Chen LD, Yu YH, Liu KX, Gao SY. Obstructive sleep apnea syndrome is associated with metabolic syndrome and inflammation. Eur Arch Otorhinolaryngol. 2014;271(4):825–31. doi:10.1007/s00405-013-2669-8.
Almendros I, Montserrat JM, Ramirez J, et al. Intermittent hypoxia enhances cancer progression in a mouse model of sleep apnoea. Eur Respir J. 2012;39(1):215–7. doi:10.1183/09031936.00185110. First published evidence linking OSA and cancer from mice models.
Almendros I, Montserrat JM, Torres M, et al. Obesity and intermittent hypoxia increase tumor growth in a mouse model of sleep apnea. Sleep Med. 2012;13(10):1254–60. doi:10.1016/j.sleep.2012.08.012. There is no sinergistic effects of IH with obesity. This study have important implications in the possible lack of relationship OSA-cancer in obese patients.
Almendros I, Montserrat JM, Torres M, et al. Intermittent hypoxia increases melanoma metastasis to the lung in a mouse model of sleep apnea. Respir Physiol Neurobiol. 2013;186(3):303–7. doi:10.1016/j.resp.2013.03.001.
Eubank T, Sherwani S, Peters S, Gross A, Evans R, Magalang UJ. Intermittent hypoxia augments melanoma tumor metastases in a mouse model of sleep apnea. Am J Respir Crit Care Med. 2013;187:A2302.
Li A, Liang M, Fang Y, Cao J, Chen B. Antioxidant tempol ameliorates intermittent hypoxia-induced melanoma lung metastasis in a mouse model of OSA. Am J Respir Crit Care Med. 2016;193:A7741.
Perini S, Martinez D, Montanari CC, Fiori CZ. Enhanced expression of melanoma progression markers in mouse model of sleep apnea. Rev Port Pneumol. 2016;22:209–13. doi:10.1016/j.rppnen.2015.11.004.
Almendros I, Wang Y, Becker L, et al. Intermittent hypoxia-induced changes in tumor-associated macrophages and tumor malignancy in a mouse model of sleep apnea. Am J Respir Crit Care Med. 2014;189(5):593–601. doi:10.1164/rccm.201310-1830OC. Intermittent hypoxia promotes a shift toward a pro-tumor phenotype in tumor associated macrophages increasing tumor proliferation, migration, invasion and extravasation.
Almendros I, Gileles-Hillel A, Khalyfa A, et al. Adipose tissue macrophage polarization by intermittent hypoxia in a mouse model of OSA: effect of tumor microenvironment. Cancer Lett. 2015;361(2):233–9. doi:10.1016/j.canlet.2015.03.010. This study suggest that the inflammed adipose tissue is an important source of macrophages to the tumor under IH conditions.
Cortese R, Almendros I, Wang Y, Gozal D. Tumor circulating DNA profiling in xenografted mice exposed to intermittent hypoxia. Oncotarget. 2015;6(1):556–69. doi:10.18632/oncotarget.2785.
Akbarpour M, Khalyfa A, Qiao Z, et al. Altered CD8+ T-cell lymphocyte function and TC1 cell stemness contribute to enhanced malignant tumor properties in murine models of sleep apnea. Sleep. 2016. https://www.ncbi.nlm.nih.gov/pubmed/27748245. This work shows how IH alters CD8+ T Cell activity facilitating tumor progression.
Almendros I, Khalyfa A, Trzepizur W, et al. Tumor cell malignant properties are enhanced by circulating exosomes in sleep apnea. Chest. 2016;150(5):1030–41. doi:10.1016/j.chest.2016.08.1438. Intermittent hypoxia can modulate the number and content of circulating exosomes supporting cancer spreading.
Almendros I, Campillo N, Torres M, et al. Role of COX-2 in intermittent hypoxia-induced tumor growth in a murine model of obstructive sleep apnea. Am J Respir Crit Care Med. 2016;193:A7738.
Vilaseca A, Musquera M, Torres M, et al. Intermittent hypoxia increases tumor angiogenesis in a mouse model of kidney cancer. Eur Urol. 2016;15(3):E218.
Gallego-Martin T, Farre R, Almendros I, Gonzalez-Obeso E, Obeso A. Chronic intermittent hypoxia mimicking sleep apnea increases spontaneous tumorigenesis in mice. Eur Respir J 2017; In press. First work showing increased cancer incidence in old mice exposed to chronic IH.
Owens RL, Gold KA, Gozal D, et al. Sleep and breathing… cancer? Cancer Prev Res (Phila). 2016;9(11):821–7. doi:10.1158/1940-6207.CAPR-16-0092.
Martinez-Garcia MA, Campos-Rodriguez F, Almendros I, Farre R. Relationship between sleep apnea and cancer. Arch Bronconeumol. 2015;51(9):456–61. doi:10.1016/j.arbres.2015.02.002.
Martinez-Garcia MA, Martorell-Calatayud A, Nagore E, et al. Association between sleep disordered breathing and aggressiveness markers of malignant cutaneous melanoma. Eur Respir J. 2014;43(6):1661–8. doi:10.1183/09031936.00115413. First clinical study specifically designed to investigate the relationship between melanoma agressiveness and severity of OSA.
Nieto FJ, Peppard PE, Young T, Finn L, Hla KM, Farre R. Sleep-disordered breathing and cancer mortality: results from the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med. 2012;186(2):190–4. doi:10.1164/rccm.201201-0130OC. One of the first evidences showing a potential relationship between OSA and cancer mortality from human epidemiological data.
Campos-Rodriguez F, Martinez-Garcia MA, Martinez M, et al. Association between obstructive sleep apnea and cancer incidence in a large multicenter Spanish cohort. Am J Respir Crit Care Med. 2013;187(1):99–105. doi:10.1164/rccm.201209-1671OC. First clinical cohort study in the field OSA-cancer.
Martinez-Garcia MA, Campos-Rodriguez F, Duran-Cantolla J, et al. Obstructive sleep apnea is associated with cancer mortality in younger patients. Sleep Med. 2014;15(7):742–8. doi:10.1016/j.sleep.2014.01.020.