Người quan sát cho hệ thống mô tả hình chữ nhật với phi tuyến đầu ra: ứng dụng trong giao tiếp an toàn và triển khai vi điều khiển

International Journal of Dynamics and Control - Tập 9 - Trang 530-540 - 2020
Lazaros Moysis1, Aggelos Giakoumis2, Mahendra Kumar Gupta3, Christos Volos1, Vikas K. Mishra4, Viet-Thanh Pham5
1Laboratory of Nonlinear Systems—Circuits & Complexity, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
2Department of Information and Electronic Engineering, International Hellenic University, Thessaloniki, Greece
3Department of Mathematics, National Institute of Technology Jamshedpur, Jharkhand, India
4Department ELEC, Vrije Universiteit Brussel (VUB), Brussels, Belgium
5Faculty of Electrical and Electronic Engineering, Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi, Vietnam

Tóm tắt

Công trình này xem xét thiết kế người quan sát cấp đầy đủ và cấp giảm cho các hệ thống mô tả hình chữ nhật với ứng dụng vào giao tiếp an toàn. Đầu ra của hệ thống được giả định có một thành phần phi tuyến kết hợp với phần tuyến tính, một trường hợp thường bị bỏ qua trong tài liệu hiện hành. Thiết kế người quan sát khả thi dưới một số điều kiện đại số và khả năng của một bất phương trình ma trận tuyến tính. Các kết quả được minh chứng qua ứng dụng trong giao tiếp an toàn, cho việc truyền tải và ước lượng an toàn tín hiệu thông tin cũng như một hình ảnh được mã hóa. Ngoài ra, một triển khai vi điều khiển của hệ thống chính được thực hiện, đây là bước đầu tiên hướng tới việc hiện thực hóa hoàn toàn thiết kế.

Từ khóa

#giao tiếp an toàn #hệ thống mô tả hình chữ nhật #phi tuyến đầu ra #thiết kế người quan sát #vi điều khiển

Tài liệu tham khảo

Strogatz SH (2018) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press, Boca Raton Schöll E, Schuster HG (2008) Handbook of chaos control. Wiley, New York Khan A, Kumar S (2019) Measure of chaos and adaptive synchronization of chaotic satellite systems. Int J Dyn Control 7(2):536–546 Farid Y, Moghaddam TV (2014) Generalized projective synchronization of chaotic satellites problem using linear matrix inequality. Int J Dyn Control 2(4):577–586 Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824 Liao T-L, Huang N-S (1999) An observer-based approach for chaotic synchronization with applications to secure communications. IEEE Trans Circuits Syst I: Fundam Theory Appl 46(9):1144–1150 Yang J, Zhu F (2013) Synchronization for chaotic systems and chaos-based secure communications via both reduced-order and step-by-step sliding mode observers. Commun Nonlinear Sci Numer Simul 18(4):926–937 Muthukumar P, Balasubramaniam P, Ratnavelu K (2017) Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem. Int J Dyn Control 5(1):115–123 Zhao Y, Zhang W, Su H, Yang J (2018) Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2018.2868482 Wang H, Han Z, Zhang W, Xie Q (2009) Chaotic synchronization and secure communication based on descriptor observer. Nonlinear Dyn 57(1–2):69 Boutayeb M, Darouach M, Rafaralahy H (2002) Generalized state-space observers for chaotic synchronization and secure communication. IEEE Trans Circuits Syst I: Fundam Theory Appl 49(3):345–349 Duan G-R (2010) Analysis and design of descriptor linear systems, vol 23. Springer, New York Gupta MK, Tomar NK, Bhaumik S (2016) On detectability and observer design for rectangular linear descriptor systems. Int J Dyn Control 4(4):438–446 Chandra S, Gupta MK, Tomar NK (2015) Synchronization of Rossler chaotic system for secure communication via descriptor observer design approach. In: 2015 international conference on signal processing, computing and control (ISPCC). IEEE, pp 120–124 Gupta MK, Tomar NK, Mishra VK, Bhaumik S (2017) Observer design for semilinear descriptor systems with applications to chaos-based secure communication. Int J Appl Comput Math 3(1):1313–1324 Wang H, Zhu X-J, Gao S-W, Chen Z-Y (2011) Singular observer approach for chaotic synchronization and private communication. Commun Nonlinear Sci Numer Simul 16(3):1517–1523 Moysis L, Volos C, Pham V-T, Goudos S, Stouboulos I, Gupta MK, Mishra VK (2019) Analysis of a chaotic system with line equilibrium and its application to secure communications using a descriptor observer. Technologies 7(4):76 Yang J, Chen Y, Zhu F (2014) Singular reduced-order observer-based synchronization for uncertain chaotic systems subject to channel disturbance and chaos-based secure communication. Appl Math Comput 229:227–238 Moysis L, Volos C, Takhi H, Kemih K, Goudos S, Nistazakis HE (2019) Analysis, synchronization and microcontroller implementation of a generalized hyperjerk system, with application to secure communications using a descriptor observer. In: 2019 Panhellenic conference on electronics and telecommunications (PACET). IEEE, pp 1–4 Zhao Y, Zhang W, Wei Guo SY, Song F (2018) Exponential state observers for nonlinear systems with incremental quadratic constraints and output nonlinearities. J Control, Autom Electr Syst 29(2):127–135 Zulfiqar A, Rehan M, Abid M (2016) Observer design for one-sided Lipschitz descriptor systems. Appl Math Model 40(3):2301–2311 Gupta MK, Tomar NK, Darouach M (2018) Unknown inputs observer design for descriptor systems with monotone nonlinearities. Int J Robust Nonlinear Control 28(17):5481–5494 Fan X, Arcak M (2003) Observer design for systems with multivariable monotone nonlinearities. Syst Control Lett 50(4):319–330 Kaçar S (2016) Analog circuit and microcontroller based RNG application of a new easy realizable 4D chaotic system. Optik 127(20):9551–9561 Acho L (2015) A discrete-time chaotic oscillator based on the logistic map: a secure communication scheme and a simple experiment using Arduino. J Frankl Inst 352(8):3113–3121 Predko M (2002) Programming and customizing PICmicro microcontrollers. McGraw Hill, USA Akgul A, Li C, Pehlivan I (2017) Amplitude control analysis of a four-wing chaotic attractor, its electronic circuit designs and microcontroller-based random number generator. J Circuits, Syst Comput 26(12):1750190 Takhi H, Kemih K, Moysis L, Volos C (2020) Passivity based control and synchronization of perturbed uncertain chaotic systems and their microcontroller implementation. Int J Dyn Control 8:973–990. https://doi.org/10.1007/s40435-020-00618-x Bates M (2004) PIC microcontrollers. Newnes, Netherlands Giakoumis A, Volos C, Khalaf AJM, Bayani A, Stouboulos I, Rajagopal K, Jafari S (2020) Analysis, synchronization and microcontroller implementation of a new quasiperiodically forced chaotic oscillator with megastability. Iran J Sci Technol, Trans Electr Eng 44(1):31–45 Li C, Sprott JC (2014) Coexisting hidden attractors in a 4-D simplified Lorenz system. Int J Bifurc Chaos 24(03):1450034 Petavratzis E, Volos C, Nistazakis H, Stouboulos I, Kyprianidis I (2018) An improved motion controller of a mobile robot based on a hyperchaotic system. Int J Mech 12:200–204 Moysis L, Volos C, Jafari S, Munoz-Pacheco JM, Kengne J, Rajagopal K, Stouboulos I (2020) Modification of the logistic map using fuzzy numbers with application to pseudorandom number generation and image encryption. Entropy 22(4):474 Moysis L, Gupta MK, Mishra V, Marwan M, Volos C (2020) Observer design for rectangular descriptor systems with incremental quadratic constraints and nonlinear outputs—Application to secure communications. Int J Robust Nonlinear Control. https://doi.org/10.1002/rnc.5233 Dimassi H, Lorı A, Belghith S et al (2012) A new secured transmission scheme based on chaotic synchronization via smooth adaptive unknown-input observers. Commun Nonlinear Sci Numer Simul 17(9):3727–3739 Cherrier E, Boutayeb M, Ragot J (2006) Observers-based synchronization and input recovery for a class of nonlinear chaotic models. IEEE Trans Circuits Syst I Regul Pap 53(9):1977–1988