Observers for a class of Lipschitz systems with extension to performance analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. Alessandri, Design of observers for Lipschitz nonlinear systems using LMI, in: NOLCOS, IFAC Symposium on Nonlinear Control Systems, Stuttgart, Germany, 2004.
Arcak, 2001, Nonlinear observers: a circle criterion design and robustness analysis, Automatica, 37, 1923, 10.1016/S0005-1098(01)00160-1
Bestle, 1983, Canonical form observer design for nonlinear time-variable systems, Internat. J. Control, 38, 419, 10.1080/00207178308933084
Boutayeb, 2004, Synchronization and input recovery in digital non-linear systems, IEEE Trans. Circuits and Systems II: Express Brief, 51, 393, 10.1109/TCSII.2004.831385
Boutayeb, 1999, A strong tracking extended Kalman observer for nonlinear discrete-time systems, IEEE Trans. Automat. Control, 44, 1550, 10.1109/9.780419
Boutayeb, 2002, Generalized state-space observers for chaotic synchronization and secure communication, IEEE Trans. Circuits and Systems I, 49, 345, 10.1109/81.989169
S. Boyd, L. Vandenberghe, Convex optimization with engineering applications, in: Lecture Notes, Stanford University, Stanford, 2001.
De Angeli, 1995, Dead-beat chaos synchronization in discrete-time systems, IEEE Trans. Circuits and Systems I, 42, 54, 10.1109/81.350802
Fan, 2003, Observer design for systems with multivariable monotone nonlinearities, Systems Control Lett., 50, 319, 10.1016/S0167-6911(03)00170-1
P. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI control toolbox, The Math Works Inc.
Gauthier, 1992, A simple observer for nonlinear systems. Applications to bioreactors, IEEE Trans. Automat. Control, 37, 875, 10.1109/9.256352
Gauthier, 1994, Observability and observers for nonlinear systems, SIAM J. Control Optim., 32, 975, 10.1137/S0363012991221791
Grassi, 2002, Theory and experimental realization of observer-based discrete-time hyperchaos synchronization, IEEE Trans. Circuits and Systems I, 49, 373, 10.1109/81.989174
Hou, 1999, Observer with linear error dynamics for nonlinear multi output systems, Systems Control Lett., 37, 1, 10.1016/S0167-6911(98)00105-4
Keller, 1987, Nonlinear observer design by transformation into a generalized observer canonical form, Internat. J. Control, 46, 1915, 10.1080/00207178708934024
Krener, 1983, Linearization by output injection and nonlinear observers, Systems Control Lett., 3, 47, 10.1016/0167-6911(83)90037-3
Krener, 1985, Nonlinear observer with linearizable error dynamics, SIAM J. Control Optim., 23, 197, 10.1137/0323016
Li, 1997, A linear matrix inequality approach to robust H∞ filtering, IEEE Trans. Signal Process., 45, 2338, 10.1109/78.622956
Liao, 1999, An observer-based approach for chaotic synchronization with applications to secure communications, IEEE Trans. Circuits and Systems I, 46, 1144, 10.1109/81.788817
Morgul, 1996, Observer based synchronization of chaotic systems, Phys. Rev. E, 54, 4802, 10.1103/PhysRevE.54.4803
Nijmeijer, 1997, An observer looks at synchronization, IEEE Trans. Circuits and Systems I, 44, 882, 10.1109/81.633877
P.R. Pagilla, Y. Zhu, Controller and observer design for Lipschitz nonlinear systems, in: American Control Conference ACC’04, Boston, Massachusetts, USA, 2004.
Pecora, 1990, Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821, 10.1103/PhysRevLett.64.821
Pertew, 2005, H∞ synthesis of unknown input observers for nonlinear Lipschitz systems, Internat. J. Control, 78, 1155, 10.1080/00207170500155488
Rajamani, 1998, Observers for Lipschitz nonlinear systems, IEEE Trans. Automat. Control, 43, 397, 10.1109/9.661604
Reif, 1999, Nonlinear state observation using H∞-filtering riccati design, IEEE Trans. Automat. Control, 44, 203, 10.1109/9.739140
Suykens, 1997, Robust nonlinear H∞ synchronization of chaotic Lur’e systems, IEEE Trans. Circuits and Systems I, 44, 891, 10.1109/81.633878
Tayebi, 2003, Observer-based iterative learning control for a class of time-varying nonlinear systems, IEEE Trans. Circuits and Systems I, 50, 452, 10.1109/TCSI.2003.808891
Zemouche, 2006, Observer design for Lipschitz nonlinear systems. The discrete-time case, IEEE Trans. Circuits and Systems II, 53, 777, 10.1109/TCSII.2006.876465