Observation of the influences of diosgenin on aging ovarian reserve and function in a mouse model
Tóm tắt
The aim of this study was to investigate the impact of diosgenin, an important monomer of sapogenins in yams, on ovarian reserve in a natural aging mice model. This randomized controlled trial included 60 9-month-old C57 naturally aging female mice. Twenty-one mice were assigned to the dio group and were fed a single dose of diosgenin (200 mg/kg/day) suspended in 0.3% CMC. Twenty mice were assigned to the DHEA group and were fed a single dose of DHEA (1.25 mg/kg/day) suspended in 0.3% CMC. The remaining 20 mice were assigned to the old control group and were fed a single dose of 0.3% CMC. Three months later, the reproductive performance of these female mice was determined by evaluating ovarian follicles and oocyte number and quality in IVF and comparing age-matched and young controls. The impact of NOBOX, GDF9 and BMP15 mRNA expression was also evaluated. Diosgenin improves ovarian reserve in naturally aging mice in terms of increasing the number of primary follicles (P < 0.05) and serum levels of AMH (P < 0.05). Diosgenin could counteract age-associated ovarian dysfunction by improving the ovarian reserve in a natural aging mice model.
Tài liệu tham khảo
Mills M, Rindfuss RR, McDonald P, et al. Why do people postpone parenthood? Reasons and social policy incentives. Hum Reprod Update. 2011;17:848–60.
Broer SL, Disseldorp JV, Broeze KA, et al. Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: an individual patient data approach. Hum Reprod Update. 2013;19:26–36.
Hanna CB, Hennehold JD. Ovarian germline stem cells: an unlimited source of oocytes. Fertil Steril. 2014;101:20–30.
Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428:145–50.
Johnson J, Bagley J, Skaznik-Wikiel M, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122:303–15.
McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21:200–14.
Wallace WH, Kelsey TW. Human ovarian reserve from conception to the menopause. PLoS ONE. 2010;5:1–7.
Broekmans FJ, Soules MR, Fauser BC. Ovarian aging: mechanisms and clinical consequences. Endocr Rev. 2009;30:465–93.
Pangas SA. Regulation of the ovarian reserve by members of the transforming growth factor beta family. Mol Reprod Dev. 2012;79:666–79.
Reddy P, Shen L, Ren C, Boman K, Lundin E, Ottander U, Lindgren P, Liu YX, Sun QY, Liu K. Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev Biol. 2005;281:160–70.
Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.
Rajkovic A, Pangas SA, Ballow D, et al. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 2004;305:1157–9.
Sautour M, Mitaine-Offer AC, Miyamoto T, et al. Antifungal steroid saponins from Dioscorea cayenensis. Planta Med. 2004;70:90–2.
Scott A, Higdon K, Tucci M, et al. The prevention of osteoporotic progression by means of steroid loaded TCPL drug delivery systems. Biomed Sci Instrum. 2001;37:13–8.
Liagre B, Vergne-Salle P, Corbiere C, et al. Diosgenin, a plant steroid, induces apoptosis in human rheumatoid arthritis synoviocytes with cyclooxygenase-2 overexpression. Arthritis Res Ther. 2004;6:373–83.
Raju J, Mehta R. Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutr Cancer. 2009;61:27–35.
Lepage C, Léger DY, Bertrand J, et al. Diosgenin induces death receptor-5 through activation of p38 pathway and promotes TRAIL-induced apoptosis in colon cancer cells. Cancer Lett. 2011;301:193–202.
Chen PS, Shih YH, Huang HC, et al. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression. PLoS ONE. 2011;6:e20164.
Wang YJ, Pan KL, Hsieh TC, et al. Diosgenin, a plant derived sapogenin, exhibits antiviral activity in vitro against hepatitis C virus. J Nat Prod. 2011;74:580–4.
Jung DH, Park HJ, Byun HE, et al. Diosgenin inhibits macrophage-derived inflammatory mediators through downregulation of CK2, JNK, NF-κB and AP-1 activation. Int Immunopharmacol. 2010;10:1047–54.
Liu K, Zhao W, Gao X, et al. Diosgenin ameliorates palmitate-induced endothelial dysfunction and insulin resistance via blocking IKKβ and IRS-1 pathways. Atherosclerosis. 2012;223:350–8.
Myers M, Britt KL, Wreford NG, et al. Methods for quantifying follicular numbers within the mouse ovary. Reproduction. 2004;127:569–80.
Faddy MJ, Gosden RG, Gougeon A, et al. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7:1342–6.
Jeppesen JV, Anderson RA, Kelsey TW, et al. Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod. 2013;19:519–27.
Visser JA, de Jong FH, Laven JS, et al. Anti-Mullerian hormone: a new marker for ovarian function. Reproduction. 2006;131:1–9.
Dong J, Albertini DF, Nishimori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383:531–5.
Yan C, Wang P, DeMayo J, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001;15:854–66.
Choi Y, Rajkovic A. Genetics of early mammalian folliculogenesis. Cell Mol Life Sci. 2006;63:579–90.
Choi Y, Rajkovic A. Characterization of NOBOX DNA binding specificity and its regulation of Gdf9 and Pou5f1 promoters. J Biol Chem. 2006;281:35747–56.
Choi Y, Qin Y, Berger MF, et al. A microarray analyses of newborn mouse ovaries lacking NOBOX. Biol Reprod. 2007;77:312–9.
Huntriss J, Hinkins M, Picton HM. cDNA cloning and expression of the human NOBOX gene in oocytes and ovarian follicles. Mol Hum Reprod. 2006;12:283–9.
Qin Y, Choi Y, Zhao H, et al. NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 2007;81:576–81.
Qin Y, Shi Y, Zhao Y, et al. Mutation analysis of NOBOX homeodomain in Chinese women with premature ovarian failure. Fertil Steril. 2009;91:1507–9.
Simpson JL. Genetic and phenotypic heterogeneity in ovarian failure: overview of selected candidate genes. Ann NY Acad Sci. 2008;1135:146–54.
Suzumori N, Yan C, Matzuk MM, et al. NOBOX is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mech Dev. 2002;111:137–41.
Suzumori N, Pangas SA, Rajkovic A. Candidate genes for premature ovarian failure. Curr Med Chem. 2007;14:353–7.