Observation of multiferroic character with the correlation of dielectric and optical study in Ho3+ substituted Bi4Ti2FeO12 Aurivillius ceramic
Tóm tắt
Ho–substituted Bi4-xHoxTi2FeO12 (x = 0, 0.5, 1.0, 1.5) n = 3 Aurivillius layered perovskite compounds were prepared by a conventional solid-state reaction method. X-ray diffraction study reveals that the compounds exhibited a major orthorhombic structure with the B2cb space group. A plate-like grain with high randomness in the distribution of Ho-modified BTFO compounds was noticed in the SEM studies. T—dependent dielectric studies were performed to examine the role of defect dipole orientation and oxygen vacancies on dielectric relaxation. For x > 0.50 compositions, a decrease in Curie temperature (Tm) with the increase in Ho-substituted in BTFO ceramics was observed. A temperature-dependent AC conductivity study reveals that the ionic conductivity induced by doubly ionized oxygen vacancies is prominent in the high-temperature region. An Increase in polarization values was observed with Ho doping due to improved grain boundaries. The detailed studies on the ferroelectric (P-E) loops and magnetization (M-H) loops of Ho—substituted BTFO ceramics were determined to point out the inherent multiferroic character. The basic photoluminescence (PL) studies indicated a well noticed two distinct bands in the visible region along with a weak PL band observed in the infra-red (IR) region, which suggests the emission involves the two types of Ho3+ centers for the visible bands.
Tài liệu tham khảo
W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)
K.F. Wang, J.-M. Liu, Z.F. Ren, Adv. Phys. 58, 321 (2009)
N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)
B. Aurivillius, Ark. Kemi 1, 463 (1949)
E.C. Subbarao, J. Phys. Chem. Solids 23, 665 (1962)
Y. Zhao, H. Fan, X. Ren, C. Long, G. Liu, Z. Liu, J. Mater. Chem. C 4, 7324 (2016)
Y. Zhao, H. Fan, G. Liu, Z. Liu, X. Ren, J. Alloys Compd. 675, 441 (2016)
K.R. Kendall, J.K. Thomas, H.C. Zur Loye, Chem. Mater. 7, 50 (1995)
Z. Ye, M.H. Tang, Y.C. Zhou, X.J. Zheng, C.P. Cheng, Z.S. Hu, H.P. Hu, Appl. Phys. Lett. 90, 042902 (2007)
K.C. Sekhar, K.R. Kandula, K.S. Babu, N.N. Rao, A.C. Babu, K.C. Mouli, T. Patri, S.N. Appl, Sci. 1, 1643 (2019)
Z. Peng, Y. Chen, Q. Chen, N. Li, X. Zhao, C. Kou, D. Xiao, J. Zhu, J. Alloys Compd. 590, 210 (2014)
X. Du, I. Chen, J. Am. Ceram. Soc. 81, 3253 (1998)
C.H. Hervoches, P. Lightfoot, Chem. Mater. 11, 3359 (1999)
T. Jardiel, A.C. Caballero, M. Villegas, J. Ceram. Soc. Japan 116, 511 (2008)
Y. Chen, S. Xie, H. Wang, Q. Chen, Q. Wang, J. Zhu, Z. Guan, J. Alloys Compd. 696, 746 (2017)
X.Q. Chen, F.J. Yang, W.Q. Cao, H. Wang, C.P. Yang, D.Y. Wang, K. Chen, Solid State Commun. 150, 1221 (2010)
B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999)
C. Lavado, M.G. Stachiotti, J. Alloys Compd. 731, 914 (2018)
S.-J. Oh, Y. Shin, T.T. Tran, D.W. Lee, A. Yoon, P.S. Halasyamani, K.M. Ok, Inorg. Chem. 51, 10402 (2012)
J.S. Kim, S.S. Kim, Appl. Phys. A 81, 1427 (2005)
J. Paul, S. Bhardwaj, K.K. Sharma, R.K. Kotnala, R. Kumar, J. Alloys Compd. 634, 58 (2015)
D. Guo, L. Zhang, M. Li, J. Liu, B. Yu, J. Am. Ceram. Soc. 91, 3280 (2008)
X. Li, L. Zhu, P. Huang, Z. Chen, W. Bai, L. Li, F. Wen, P. Zheng, W. Wu, L. Zheng, J. Appl. Phys. 127, 44102 (2020)
J.A. Horn, S.C. Zhang, U. Selvaraj, G.L. Messing, S. Trolier-McKinstry, J. Am. Ceram. Soc. 82, 921 (1999)
X. Chou, J. Zhai, H. Jiang, X. Yao, J. Appl. Phys. 102, 84106 (2007)
R.D. Shannon, Acta Crystallogr. Sec.t A Cryst. Physics, Diffraction,. Theor. Gen Crystallogr 32, 751 (1976)
M. Wu, Z. Tian, S. Yuan, Z. Huang, Mater. Lett. 68, 190 (2012)
T. Wang, H. Deng, X. Meng, H. Cao, W. Zhou, P. Shen, Y. Zhang, P. Yang, J. Chu, Ceram. Int. 43, 8792 (2017)
S. Kojima, Ferroelectrics 239, 55 (2000)
J. Zhu, X. Chen, Z. Zhang, J. Shen, Acta Mater. 53, 3155 (2005)
M. Osada, M. Tada, M. Kakihana, T. Watanabe, H. Funakubo, Jpn. J. Appl. Phys. 40, 5572 (2001)
R. Selvamani, A.H. Pandey, S.M. Gupta, A.K. Karnal, J. Mater. Sci. Mater. Electron. 33, 5396 (2022)
D. O’Neill, R.M. Bowman, J.M. Gregg, Appl. Phys. Lett. 77, 1520 (2000). https://doi.org/10.1063/1-1290691
J.A. Dias, J.A. Oliveira, C.G. Renda, M.R. Morelli, Mater. Res. (2018). https://doi.org/10.1590/1980-5373-mr-2018-0118
C.G. Koops, Phys. Rev. 83, 121 (1951)
J. Wang, X.G. Tang, H.L.W. Chan, C.L. Choy, H. Luo, Appl. Phys. Lett. 86, 152907 (2005)
T.-F. Zhang, X.-G. Tang, Q.-X. Liu, S.-G. Lu, Y.-P. Jiang, X.-X. Huang, Q.-F. Zhou, AIP Adv. 4, 107141 (2014)
J. Hou, Y. Qu, R. Vaish, D. Krsmanovic, R.V. Kumar, J. Am. Ceram. Soc. 94, 2523 (2011)
H. Irie, M. Miyayama, T. Kudo, J. Appl. Phys. 90, 4089 (2001)
L.A. Prelorendjo, C.E. Johnson, M.F. Thomas, B.M. Wanklyn, J. Phys. C Solid State Phys. 13, 2567 (1980)
R. Liu, Z. Wang, S. Peng, J. Bi, J. Wu, Z. Ye, J. Am. Ceram. Soc. 103, 1097 (2020)
T. Wei, Q.J. Zhou, C.Z. Zhao, Y.B. Lin, Y.L. Zou, Y. Li, L.S. Zhang, Ceram. Int. 39, 7211 (2013)
C. Devaraja, G. V. J. Gowda, K. Keshavamurthy, and B. Eraiah, in AIP Conf. Proc. (AIP Publishing LLC, 2019), p. 20172.