Observation of electron–phonon coupling and linear dichroism in PL spectra of ultra-small CsPbBr3 nanoparticle solution
Tài liệu tham khảo
Hou, 2021, Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses, Science, 374, 621, 10.1126/science.abf4460
Hao, 2020, Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation, Nat. Energy, 5, 79, 10.1038/s41560-019-0535-7
Liu, 2023, The electronic disorder landscape of mixed halide perovskites, ACS Energy Lett., 8, 250, 10.1021/acsenergylett.2c02352
Yakunin, 2015, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun., 6, 8056, 10.1038/ncomms9056
Protesescu, 2015, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett., 15, 3692, 10.1021/nl5048779
Li, 2016, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes, Adv. Funct. Mater., 26, 2435, 10.1002/adfm.201600109
Otero-Martinez, 2022, Colloidal metal-halide perovskite nanoplatelets: thickness-controlled synthesis, properties, and application in light-emitting diodes, Adv. Mater., 34, 10.1002/adma.202107105
Sun, 2016, Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature, ACS Nano, 10, 3648, 10.1021/acsnano.5b08193
Dutta, 2018, Phase-stable CsPbI3 nanocrystals: the reaction temperature matters, Angew. Chem. Int. Ed., 57, 9083, 10.1002/anie.201803701
Kong, 2021, Ultrasmall CsPbBr3 quantum dots with bright and wide blue emissions, Phys. Status Solidi Rapid Res. Lett., 15, 2100134, 10.1002/pssr.202100134
Wen, 2022, Kinetic control for continuously tunable lattice parameters, size, and composition during CsPbX3 (X = Cl, Br, I) nanorod synthesis, ACS Nano, 16, 8318, 10.1021/acsnano.2c02474
Barfusser, 2022, Confined excitons in spherical-like halide perovskite quantum dots, Nano Lett., 22, 8810, 10.1021/acs.nanolett.2c02223
Luo, 2020, Ultrafast thermodynamic control for stable and efficient mixed halide perovskite nanocrystals, Adv. Funct. Mater., 30, 2000026, 10.1002/adfm.202000026
Dong, 2020, Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots, Nat. Nanotechnol., 15, 668, 10.1038/s41565-020-0714-5
Zhang, 2018, All-inorganic metal halide perovskite nanocrystals: opportunities and challenges, ACS Cent. Sci., 4, 668, 10.1021/acscentsci.8b00201
Zhang, 2021, Room-temperature quaternary alkylammonium passivation toward morphology-controllable CsPbBr3 nanocrystals with excellent luminescence and stability for white LEDs, Chem. Eng. J., 417, 129349, 10.1016/j.cej.2021.129349
Akkerman, 2022, Science, 377, 1406, 10.1126/science.abq3616
Liu, 2017, Colloidal synthesis of CH3NH3PbBr3 nanoplatelets with polarized emission through self-organization, Angew. Chem. Int. Ed., 56, 1780, 10.1002/anie.201610619
Sichert, 2015, Quantum size effect in organometal halide perovskite nanoplatelets, Nano Lett., 15, 6521, 10.1021/acs.nanolett.5b02985
Saba, 2014, Correlated electron-hole plasma in organometal perovskites, Nat. Commun., 5, 5049, 10.1038/ncomms6049
Zhang, 2019, Optical properties of two-dimensional perovskite films of (C6H5C2H4NH3)2[PbI4] and (C6H5C2H4NH3)2 (CH3NH3)2[Pb3I10], J. Phys. Chem. Lett., 10, 13, 10.1021/acs.jpclett.8b03458
Allen, 1976, Theory of the temperature dependence of electronic band structures, J. Phys. C Solid State Phys., 9, 2305, 10.1088/0022-3719/9/12/013
Olkhovets, 1998, Size-dependent temperature variation of the energy gap in lead-salt quantum dots, Phys. Rev. Lett., 81, 3539, 10.1103/PhysRevLett.81.3539
Han, 2022, Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots, Nat. Mater., 21, 1282, 10.1038/s41563-022-01349-4
Gramlich, 2021, How exciton-phonon coupling impacts photoluminescence in halide perovskite nanoplatelets, J. Phys. Chem. Lett., 12, 11371, 10.1021/acs.jpclett.1c03437
Yang, 2018, Engineering the exciton dissociation in quantum-confined 2D CsPbBr3 nanosheet films, Adv. Funct. Mater., 28, 1705908, 10.1002/adfm.201705908
Tao, 2021, Momentarily trapped exciton polaron in two-dimensional lead halide perovskites, Nat. Commun., 12, 1400, 10.1038/s41467-021-21721-3
Tao, 2022, Dynamic exciton polaron in two-dimensional lead halide perovskites and implications for optoelectronic applications, Acc. Chem. Res., 55, 345, 10.1021/acs.accounts.1c00626
Ma, 2020, Local phonon modes concerned with the self-trapped exciton state in CsPbBr3 nanocrystals, J. Phys. Chem. C, 124, 27130, 10.1021/acs.jpcc.0c07879
Straus, 2016, Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites, J. Am. Chem. Soc., 138, 13798, 10.1021/jacs.6b08175
Lao, 2019, Anomalous temperature-dependent exciton–phonon coupling in cesium lead bromide perovskite nanosheets, J. Phys. Chem. C, 123, 5128, 10.1021/acs.jpcc.9b00091
Lao, 2020, Photoluminescence signatures of thermal expansion, electron-phonon coupling and phase transitions in cesium lead bromide perovskite nanosheets, Nanoscale, 12, 7315, 10.1039/D0NR00025F
Yamada, 2022, Electron-phonon interactions in halide perovskites, NPG Asia Mater., 14, 48, 10.1038/s41427-022-00394-4
Iaru, 2021, Frohlich interaction dominated by a single phonon mode in CsPbBr3, Nat. Commun., 12, 5844, 10.1038/s41467-021-26192-0
Stelmakh, 2021, On the mechanism of alkylammonium ligands binding to the surface of CsPbBr3 nanocrystals, Chem. Mater., 33, 5962, 10.1021/acs.chemmater.1c01081
Ravi, 2017, Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes, J. Phys. Chem. Lett., 8, 4988, 10.1021/acs.jpclett.7b02192
Yang, 2019, Flexible polymer-assisted mesoscale self-assembly of colloidal CsPbBr3 perovskite nanocrystals into higher order superstructures with strong inter-nanocrystal electronic coupling, J. Am. Chem. Soc., 141, 1526, 10.1021/jacs.8b10083
Schlipf, 2018, Carrier lifetimes and polaronic mass enhancement in the hybrid halide perovskite CH3NH3PbI3 from multiphonon frohlich coupling, Phys. Rev. Lett., 121, 10.1103/PhysRevLett.121.086402
Zhao, 2003, Energy-dependent huang-rhys factor of free excitons, Phys. Rev. B, 68, 125309, 10.1103/PhysRevB.68.125309
Slocombe, 2023, Quantum tunnelling effects in the guanine-thymine wobble misincorporation via tautomerism, J. Phys. Chem. Lett., 14, 9, 10.1021/acs.jpclett.2c03171
Bekenstein, 2015, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies, J. Am. Chem. Soc., 137, 16008, 10.1021/jacs.5b11199
Zhao, 2022, Optical properties of inorganic halide perovskite nanorods: role of anisotropy, temperature, pressure, and nonlinearity, J. Phys. Chem. C, 126, 2003, 10.1021/acs.jpcc.1c06331
Hirotsu, 1974, Structural phase transitions in CsPbBr3, J. Phys. Soc. Japan, 37, 1393, 10.1143/JPSJ.37.1393
Whitcher, 2019, Dual phases of crystalline and electronic structures in the nanocrystalline perovskite CsPbBr3, NPG Asia Mater., 11, 70, 10.1038/s41427-019-0170-6
Svirskas, 2020, Phase transitions, screening and dielectric response of CsPbBr3, J. Mater. Chem. A, 8, 14015, 10.1039/D0TA04155F
Strandell, 2021, The temperature dependence of the photoluminescence of CsPbBr3 nanocrystals reveals phase transitions and homogeneous linewidths, J. Phys. Chem. C, 125, 27504, 10.1021/acs.jpcc.1c09501
Volkov, 1969, Nuclear quadrupole resonance (NQR) of 79Br and 81Br in perovskite and orthorhombic forms of CsPbBr3 and CsPbJ3, Phys. Status Solidi B Basic Res., 35, K167, 10.1002/pssb.19690350277
Porotnikov, 2021, Photoinduced rotation of colloidal semiconductor nanocrystals in an electric field, Nano Lett., 21, 4787, 10.1021/acs.nanolett.1c01327
Adamska, 2014, Self-trapping of excitons, violation of Condon approximation, and efficient fluorescence in conjugated cycloparaphenylenes, Nano Lett., 14, 6539, 10.1021/nl503133e
Bersuker, 2001, Modern aspects of the Jahn-Teller effect theory and applications to molecular problems, Chem. Rev., 101, 1067, 10.1021/cr0004411
Li, 2021, Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites, Nanoscale, 13, 10239, 10.1039/D1NR01990B
Zhou, 2020, Structural deformation controls charge losses in MAPbI3: unsupervised machine learning of nonadiabatic molecular dynamics, ACS Energy Lett., 5, 1930, 10.1021/acsenergylett.0c00899
Madjet, 2017, Cation effect on hot carrier cooling in halide perovskite materials, J. Phys. Chem. Lett., 8, 4439, 10.1021/acs.jpclett.7b01732
Hyeon-Deuk, 2012, Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination, J. Phys. Condens. Matter, 24, 363201, 10.1088/0953-8984/24/36/363201
Liu, 2022, Nanoscale coherent phonon spectroscopy, Sci. Adv., 8, 10.1126/sciadv.abq5682
Thouin, 2019, Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites, Nat. Mater., 18, 349, 10.1038/s41563-018-0262-7
Zhou, 2020, Interfacial strain release from the WS2/CsPbBr3 van der waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells, Angew. Chem. Int. Ed., 59, 21997, 10.1002/anie.202010252
Zhao, 2020, Precise stress control of inorganic perovskite films for carbon-based solar cells with an ultrahigh voltage of 1.622 V, Nano Energy, 67, 104286, 10.1016/j.nanoen.2019.104286