Observation of electron–phonon coupling and linear dichroism in PL spectra of ultra-small CsPbBr3 nanoparticle solution

eScience - Tập 3 - Trang 100185 - 2023
Chengqiang Wang1,2,3, Tao Song4, Pingyuan Yan1,2, Shu Hu2, Chenhong Xiang2, Zihan Wu2, Heng Li2, Haibin Zhao1, Lili Han3, Chuanxiang Sheng1,2
1State Key Laboratory of Photovoltaic Science and Technology, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
2School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
3State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
4College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China

Tài liệu tham khảo

Hou, 2021, Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses, Science, 374, 621, 10.1126/science.abf4460 Hao, 2020, Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation, Nat. Energy, 5, 79, 10.1038/s41560-019-0535-7 Liu, 2023, The electronic disorder landscape of mixed halide perovskites, ACS Energy Lett., 8, 250, 10.1021/acsenergylett.2c02352 Yakunin, 2015, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun., 6, 8056, 10.1038/ncomms9056 Protesescu, 2015, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett., 15, 3692, 10.1021/nl5048779 Li, 2016, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes, Adv. Funct. Mater., 26, 2435, 10.1002/adfm.201600109 Otero-Martinez, 2022, Colloidal metal-halide perovskite nanoplatelets: thickness-controlled synthesis, properties, and application in light-emitting diodes, Adv. Mater., 34, 10.1002/adma.202107105 Sun, 2016, Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature, ACS Nano, 10, 3648, 10.1021/acsnano.5b08193 Dutta, 2018, Phase-stable CsPbI3 nanocrystals: the reaction temperature matters, Angew. Chem. Int. Ed., 57, 9083, 10.1002/anie.201803701 Kong, 2021, Ultrasmall CsPbBr3 quantum dots with bright and wide blue emissions, Phys. Status Solidi Rapid Res. Lett., 15, 2100134, 10.1002/pssr.202100134 Wen, 2022, Kinetic control for continuously tunable lattice parameters, size, and composition during CsPbX3 (X = Cl, Br, I) nanorod synthesis, ACS Nano, 16, 8318, 10.1021/acsnano.2c02474 Barfusser, 2022, Confined excitons in spherical-like halide perovskite quantum dots, Nano Lett., 22, 8810, 10.1021/acs.nanolett.2c02223 Luo, 2020, Ultrafast thermodynamic control for stable and efficient mixed halide perovskite nanocrystals, Adv. Funct. Mater., 30, 2000026, 10.1002/adfm.202000026 Dong, 2020, Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots, Nat. Nanotechnol., 15, 668, 10.1038/s41565-020-0714-5 Zhang, 2018, All-inorganic metal halide perovskite nanocrystals: opportunities and challenges, ACS Cent. Sci., 4, 668, 10.1021/acscentsci.8b00201 Zhang, 2021, Room-temperature quaternary alkylammonium passivation toward morphology-controllable CsPbBr3 nanocrystals with excellent luminescence and stability for white LEDs, Chem. Eng. J., 417, 129349, 10.1016/j.cej.2021.129349 Akkerman, 2022, Science, 377, 1406, 10.1126/science.abq3616 Liu, 2017, Colloidal synthesis of CH3NH3PbBr3 nanoplatelets with polarized emission through self-organization, Angew. Chem. Int. Ed., 56, 1780, 10.1002/anie.201610619 Sichert, 2015, Quantum size effect in organometal halide perovskite nanoplatelets, Nano Lett., 15, 6521, 10.1021/acs.nanolett.5b02985 Saba, 2014, Correlated electron-hole plasma in organometal perovskites, Nat. Commun., 5, 5049, 10.1038/ncomms6049 Zhang, 2019, Optical properties of two-dimensional perovskite films of (C6H5C2H4NH3)2[PbI4] and (C6H5C2H4NH3)2 (CH3NH3)2[Pb3I10], J. Phys. Chem. Lett., 10, 13, 10.1021/acs.jpclett.8b03458 Allen, 1976, Theory of the temperature dependence of electronic band structures, J. Phys. C Solid State Phys., 9, 2305, 10.1088/0022-3719/9/12/013 Olkhovets, 1998, Size-dependent temperature variation of the energy gap in lead-salt quantum dots, Phys. Rev. Lett., 81, 3539, 10.1103/PhysRevLett.81.3539 Han, 2022, Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots, Nat. Mater., 21, 1282, 10.1038/s41563-022-01349-4 Gramlich, 2021, How exciton-phonon coupling impacts photoluminescence in halide perovskite nanoplatelets, J. Phys. Chem. Lett., 12, 11371, 10.1021/acs.jpclett.1c03437 Yang, 2018, Engineering the exciton dissociation in quantum-confined 2D CsPbBr3 nanosheet films, Adv. Funct. Mater., 28, 1705908, 10.1002/adfm.201705908 Tao, 2021, Momentarily trapped exciton polaron in two-dimensional lead halide perovskites, Nat. Commun., 12, 1400, 10.1038/s41467-021-21721-3 Tao, 2022, Dynamic exciton polaron in two-dimensional lead halide perovskites and implications for optoelectronic applications, Acc. Chem. Res., 55, 345, 10.1021/acs.accounts.1c00626 Ma, 2020, Local phonon modes concerned with the self-trapped exciton state in CsPbBr3 nanocrystals, J. Phys. Chem. C, 124, 27130, 10.1021/acs.jpcc.0c07879 Straus, 2016, Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites, J. Am. Chem. Soc., 138, 13798, 10.1021/jacs.6b08175 Lao, 2019, Anomalous temperature-dependent exciton–phonon coupling in cesium lead bromide perovskite nanosheets, J. Phys. Chem. C, 123, 5128, 10.1021/acs.jpcc.9b00091 Lao, 2020, Photoluminescence signatures of thermal expansion, electron-phonon coupling and phase transitions in cesium lead bromide perovskite nanosheets, Nanoscale, 12, 7315, 10.1039/D0NR00025F Yamada, 2022, Electron-phonon interactions in halide perovskites, NPG Asia Mater., 14, 48, 10.1038/s41427-022-00394-4 Iaru, 2021, Frohlich interaction dominated by a single phonon mode in CsPbBr3, Nat. Commun., 12, 5844, 10.1038/s41467-021-26192-0 Stelmakh, 2021, On the mechanism of alkylammonium ligands binding to the surface of CsPbBr3 nanocrystals, Chem. Mater., 33, 5962, 10.1021/acs.chemmater.1c01081 Ravi, 2017, Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes, J. Phys. Chem. Lett., 8, 4988, 10.1021/acs.jpclett.7b02192 Yang, 2019, Flexible polymer-assisted mesoscale self-assembly of colloidal CsPbBr3 perovskite nanocrystals into higher order superstructures with strong inter-nanocrystal electronic coupling, J. Am. Chem. Soc., 141, 1526, 10.1021/jacs.8b10083 Schlipf, 2018, Carrier lifetimes and polaronic mass enhancement in the hybrid halide perovskite CH3NH3PbI3 from multiphonon frohlich coupling, Phys. Rev. Lett., 121, 10.1103/PhysRevLett.121.086402 Zhao, 2003, Energy-dependent huang-rhys factor of free excitons, Phys. Rev. B, 68, 125309, 10.1103/PhysRevB.68.125309 Slocombe, 2023, Quantum tunnelling effects in the guanine-thymine wobble misincorporation via tautomerism, J. Phys. Chem. Lett., 14, 9, 10.1021/acs.jpclett.2c03171 Bekenstein, 2015, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies, J. Am. Chem. Soc., 137, 16008, 10.1021/jacs.5b11199 Zhao, 2022, Optical properties of inorganic halide perovskite nanorods: role of anisotropy, temperature, pressure, and nonlinearity, J. Phys. Chem. C, 126, 2003, 10.1021/acs.jpcc.1c06331 Hirotsu, 1974, Structural phase transitions in CsPbBr3, J. Phys. Soc. Japan, 37, 1393, 10.1143/JPSJ.37.1393 Whitcher, 2019, Dual phases of crystalline and electronic structures in the nanocrystalline perovskite CsPbBr3, NPG Asia Mater., 11, 70, 10.1038/s41427-019-0170-6 Svirskas, 2020, Phase transitions, screening and dielectric response of CsPbBr3, J. Mater. Chem. A, 8, 14015, 10.1039/D0TA04155F Strandell, 2021, The temperature dependence of the photoluminescence of CsPbBr3 nanocrystals reveals phase transitions and homogeneous linewidths, J. Phys. Chem. C, 125, 27504, 10.1021/acs.jpcc.1c09501 Volkov, 1969, Nuclear quadrupole resonance (NQR) of 79Br and 81Br in perovskite and orthorhombic forms of CsPbBr3 and CsPbJ3, Phys. Status Solidi B Basic Res., 35, K167, 10.1002/pssb.19690350277 Porotnikov, 2021, Photoinduced rotation of colloidal semiconductor nanocrystals in an electric field, Nano Lett., 21, 4787, 10.1021/acs.nanolett.1c01327 Adamska, 2014, Self-trapping of excitons, violation of Condon approximation, and efficient fluorescence in conjugated cycloparaphenylenes, Nano Lett., 14, 6539, 10.1021/nl503133e Bersuker, 2001, Modern aspects of the Jahn-Teller effect theory and applications to molecular problems, Chem. Rev., 101, 1067, 10.1021/cr0004411 Li, 2021, Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites, Nanoscale, 13, 10239, 10.1039/D1NR01990B Zhou, 2020, Structural deformation controls charge losses in MAPbI3: unsupervised machine learning of nonadiabatic molecular dynamics, ACS Energy Lett., 5, 1930, 10.1021/acsenergylett.0c00899 Madjet, 2017, Cation effect on hot carrier cooling in halide perovskite materials, J. Phys. Chem. Lett., 8, 4439, 10.1021/acs.jpclett.7b01732 Hyeon-Deuk, 2012, Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination, J. Phys. Condens. Matter, 24, 363201, 10.1088/0953-8984/24/36/363201 Liu, 2022, Nanoscale coherent phonon spectroscopy, Sci. Adv., 8, 10.1126/sciadv.abq5682 Thouin, 2019, Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites, Nat. Mater., 18, 349, 10.1038/s41563-018-0262-7 Zhou, 2020, Interfacial strain release from the WS2/CsPbBr3 van der waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells, Angew. Chem. Int. Ed., 59, 21997, 10.1002/anie.202010252 Zhao, 2020, Precise stress control of inorganic perovskite films for carbon-based solar cells with an ultrahigh voltage of 1.622 V, Nano Energy, 67, 104286, 10.1016/j.nanoen.2019.104286