Observation of Griffiths phase, spin glass behaviour and magnetocaloric effect in frustrated Ga2Mn2-xCrxO7 (x = 0, 0.1, 0.3, 0.5) pyrochlore compounds
Tài liệu tham khảo
Yang, 2018, A promising material for thermal barrier coating: pyrochlore-related compound Sm2FeTaO7, Scripta Mater., 149, 49, 10.1016/j.scriptamat.2018.02.005
Anantharaman, 2021, Potential of pyrochlore structure materials in solid oxide fuel cell applications, Ceram. Int., 47, 4367, 10.1016/j.ceramint.2020.10.012
Cai, 2017, Giant reversible magnetocaloric effect in the pyrochlore Er2Mn2O7 due to a cooperative two-sublattice ferromagnetic order, Phys. Rev. Mater., 1
Zeng, 2007, Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes, J. Phys. Chem. C, 111, 11879, 10.1021/jp0684628
Sharma, 2019, Probing the temperature effects in the radiation stability of Nd2Zr2O7 pyrochlore under swift ion irradiation, Materialia, 6, 10.1016/j.mtla.2019.100317
Subramanian, 1983, Oxide pyrochlores—a review, Prog. Solid State Chem., 15, 55, 10.1016/0079-6786(83)90001-8
Gardner, 1999, Glassy statics and dynamics in the chemically ordered pyrochlore antiferromagnet Y2Mo2O7, Phys. Rev. Lett., 83, 211, 10.1103/PhysRevLett.83.211
Aung, 2020, Optical properties of improved Tb2Hf2O7 pyrochlore ceramics, J. Alloys Compd., 822, 10.1016/j.jallcom.2019.153564
Koroleva, 2022, Effect of Li and Li-RE co-doping on structure, stability, optical and electrical properties of bismuth magnesium niobate pyrochlore, Mater. Res. Bull., 145, 10.1016/j.materresbull.2021.111520
Khachnaoui, 2021, Investigation of Griffiths-like phase at low temperature in a new magnetocaloric compound, Al2Mn2O7, J. Phys. Chem. Solid., 148, 10.1016/j.jpcs.2020.109605
Taira, 2003, Magnetic structure of pyrochlore-type Er2Ru2O7, J. Solid State Chem., 176, 165, 10.1016/S0022-4596(03)00384-0
Elghandour, 2022, Field induced spin freezing and low temperature heat capacity of disordered pyrochlore oxide Ho2Zr2O7, J. Phys. Condens. Matter, 34
Bala, 2012, Synthesis, structural and electrical properties of Ti modified Bi2Sn2O7 pyrochlore, Phys. B Condens. Matter, 407, 3939, 10.1016/j.physb.2012.05.066
Wang, 2016, Hydrothermal synthesis and photocatalytic properties of pyrochlore Sm2Zr2O7 nanoparticles, J. Photochem. Photobiol. Chem., 321, 48, 10.1016/j.jphotochem.2016.01.011
Khachnaoui, 2018, Synthesis and magnetic properties of new pyrochlore Fe2Mn2O7 compound, J. Supercond. Nov. Magnetism, 31, 3803, 10.1007/s10948-018-4656-1
Raju, 1994, Magnetic, electrical, and small-angle neutron-scattering studies of possible long-range order in the pyrochlores Tl2Mn2O7 and In2Mn2O7, Phys. Rev. B, 49, 1086, 10.1103/PhysRevB.49.1086
Shimakawa, 1996, Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure, Nature, 379, 53, 10.1038/379053a0
Greedan, 1996, Structure and magnetic properties of the pyrochlore Sc2Mn2O7, Solid State Commun., 99, 399, 10.1016/0038-1098(96)00295-5
Khachnaoui, 2019, Appearance of griffiths-like phase in a new pyrochlore compound La2Mn2O7− δ, J. Supercond. Nov. Magnetism, 32, 2133, 10.1007/s10948-018-4934-y
Griffiths, 1969, Nonanalytic behaviour above the critical point in a random Ising ferromagnet, Phys. Rev. Lett., 23, 17, 10.1103/PhysRevLett.23.17
Magen, 2006, Observation of a Griffiths-like phase in the magnetocaloric compound Tb5Si2Ge2, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.167201
Bouzerar, 2007, Effect of correlated disorder on the magnetism of double exchange systems, Phys. Rev. B, 76, 10.1103/PhysRevB.76.020401
Greedan, 2006, Frustrated rare earth magnetism: spin glasses, spin liquids and spin ices in pyrochlore oxides, J. Alloys Compd., 408, 444, 10.1016/j.jallcom.2004.12.084
Ehlers, 2012, Low energy spin dynamics in the spin ice Ho2Sn2O7, J. Phys. Condens. Matter, 24, 10.1088/0953-8984/24/7/076005
Yaouanc, 2011, Exotic transition in the three-dimensional spin-liquid candidate Tb2Ti2O7, Phys. Rev. B, 84, 10.1103/PhysRevB.84.184403
Raju, 1999, Transition to long-range magnetic order in the highly frustrated insulating pyrochlore antiferromagnet Gd2Ti2O7, Phys. Rev. B, 59, 10.1103/PhysRevB.59.14489
Gardner, 2010, Magnetic pyrochlore oxides, Rev. Mod. Phys., 82, 53, 10.1103/RevModPhys.82.53
Mydosh, 2015, Spin glasses: redux: an updated experimental/materials survey, Rep. Prog. Phys., 78, 10.1088/0034-4885/78/5/052501
Binder, 1986, Spin glasses: experimental facts, theoretical concepts, and open questions, Rev. Mod. Phys., 58, 801, 10.1103/RevModPhys.58.801
Ehlers, 2010, High-resolution neutron scattering study of Tb2Mo2O7: a geometrically frustrated spin glass, Phys. Rev. B, 81, 10.1103/PhysRevB.81.224405
Reimers, 1991, Short-range magnetic ordering in the highly frustrated pyrochlore Y2Mn2O7, Phys. Rev. B, 43, 3387, 10.1103/PhysRevB.43.3387
Zhou, 2008, Unconventional spin glass behaviour in the cubic pyrochlore Mn2Sb2O7, J. Phys. Condens. Matter, 20, 10.1088/0953-8984/20/32/325201
Wang, 2021, Spin glass feature and exchange bias effect in metallic Pt/antiferromagnetic LaMnO3 heterostructure, J. Phys. Condens. Matter, 33, 10.1088/1361-648X/ac0023
Zhigadlo, 2022, Spin-glass-like behaviour in SmFeAsO0.8F0.2, Mendeleev Commun., 32, 305, 10.1016/j.mencom.2022.05.004
Sahu, 2022, Spin–glass behaviour in Shastry–Sutherland lattice of Tm2Cu2In, J. Magn. Magn Mater., 543, 10.1016/j.jmmm.2021.168599
Ramirez, 1994, Strongly geometrically frustrated magnets, Annu. Rev. Mater. Sci., 24, 453, 10.1146/annurev.ms.24.080194.002321
Panwar, 2022, Low-temperature magnetic and magnetocaloric properties of manganese-substituted Gd0.5Er0.5CrO3 orthochromites, Crystals, 12, 263, 10.3390/cryst12020263
Krivoruchko, 2014, The Griffiths phase and the metal-insulator transition in substituted manganites, Low Temp. Phys., 40, 586, 10.1063/1.4890365
Pramanik, 2010, Griffiths phase and its evolution with Mn-site disorder in the half-doped manganite Pr0.5Sr0.5Mn1−yGayO3 (y= 0.0, 0.025, and 0.05), Phys. Rev. B, 81, 10.1103/PhysRevB.81.024431
Ahad, 2018, Griffiths-like phase and charge-spin glass state in La1.5Sr0.5CoO4, Appl. Phys. Lett., 113, 10.1063/1.5042750
Ouyang, 2011, Short-range ferromagnetic correlations in the spin-chain compound Ca3CoMnO 6, Phys. Rev. B, 84, 10.1103/PhysRevB.84.054435
Karmakar, 2013, A Griffiths-like phase in antiferromagnetic R0.5Eu0.5MnO3 (R= Pr, Nd, Sm), J. Phys. Condens. Matter, 25, 10.1088/0953-8984/25/6/066006
Karmakar, 2012, Observation of Griffiths phase in antiferromagnetic La0.32Eu0.68MnO3, J. Phys. Condens. Matter, 24, 10.1088/0953-8984/24/12/126003
Ouyang, 2006, Short-range anisotropic ferromagnetic correlations in the paramagnetic and antiferromagnetic phases of Gd5Ge4, Phys. Rev. B, 74, 10.1103/PhysRevB.74.094404
Tong, 2008, Griffiths phase and thermomagnetic irreversibility behaviour in slightly electron-doped manganites Sm1− xCaxMnO3 (0.80≤ x≤ 0.92), Phys. Rev. B, 77, 10.1103/PhysRevB.77.184432
Ghorai, 2021, Evolution of Griffiths phase and critical behaviour of La1-xPbxMnO3±y solid solutions, J. Phys. Condens. Matter, 33, 10.1088/1361-648X/abdd64
Banerjee, 1964, On a generalised approach to first and second order magnetic transitions, Phys. Lett., 12, 16, 10.1016/0031-9163(64)91158-8
Zhang, 2018, Cryogenic magnetic properties in the pyrochlore RE2TiMnO7 (RE= Dy and Ho) compounds, Ceram. Int., 44, 15681, 10.1016/j.ceramint.2018.05.239
Liu, 2018, Anisotropic magnetocaloric effect in single crystals of CrI3, Phys. Rev. B, 97, 10.1103/PhysRevB.97.174418
Franco, 2010, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials, Int. J. Refrig., 33, 465, 10.1016/j.ijrefrig.2009.12.019
Chung, 2023, Magnetocaloric properties of a wire composite of La (Fe,Mn,Si)13-H alloy powder in a Gd cylindrical tube, J. Alloys Compd., 947, 10.1016/j.jallcom.2023.169551
Biswas, 2013, The universal behaviour of inverse magnetocaloric effect in antiferromagnetic materials, J. Appl. Phys., 113, 17A902, 10.1063/1.4793768