Observation of Griffiths phase, spin glass behaviour and magnetocaloric effect in frustrated Ga2Mn2-xCrxO7 (x = 0, 0.1, 0.3, 0.5) pyrochlore compounds

Current Applied Physics - Tập 53 - Trang 86-93 - 2023
Kuldeep Singh1, Neeraj Panwar1
1Department of Physics, Central University of Rajasthan Bandarsindri, Ajmer, 305817, Rajasthan, India

Tài liệu tham khảo

Yang, 2018, A promising material for thermal barrier coating: pyrochlore-related compound Sm2FeTaO7, Scripta Mater., 149, 49, 10.1016/j.scriptamat.2018.02.005 Anantharaman, 2021, Potential of pyrochlore structure materials in solid oxide fuel cell applications, Ceram. Int., 47, 4367, 10.1016/j.ceramint.2020.10.012 Cai, 2017, Giant reversible magnetocaloric effect in the pyrochlore Er2Mn2O7 due to a cooperative two-sublattice ferromagnetic order, Phys. Rev. Mater., 1 Zeng, 2007, Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes, J. Phys. Chem. C, 111, 11879, 10.1021/jp0684628 Sharma, 2019, Probing the temperature effects in the radiation stability of Nd2Zr2O7 pyrochlore under swift ion irradiation, Materialia, 6, 10.1016/j.mtla.2019.100317 Subramanian, 1983, Oxide pyrochlores—a review, Prog. Solid State Chem., 15, 55, 10.1016/0079-6786(83)90001-8 Gardner, 1999, Glassy statics and dynamics in the chemically ordered pyrochlore antiferromagnet Y2Mo2O7, Phys. Rev. Lett., 83, 211, 10.1103/PhysRevLett.83.211 Aung, 2020, Optical properties of improved Tb2Hf2O7 pyrochlore ceramics, J. Alloys Compd., 822, 10.1016/j.jallcom.2019.153564 Koroleva, 2022, Effect of Li and Li-RE co-doping on structure, stability, optical and electrical properties of bismuth magnesium niobate pyrochlore, Mater. Res. Bull., 145, 10.1016/j.materresbull.2021.111520 Khachnaoui, 2021, Investigation of Griffiths-like phase at low temperature in a new magnetocaloric compound, Al2Mn2O7, J. Phys. Chem. Solid., 148, 10.1016/j.jpcs.2020.109605 Taira, 2003, Magnetic structure of pyrochlore-type Er2Ru2O7, J. Solid State Chem., 176, 165, 10.1016/S0022-4596(03)00384-0 Elghandour, 2022, Field induced spin freezing and low temperature heat capacity of disordered pyrochlore oxide Ho2Zr2O7, J. Phys. Condens. Matter, 34 Bala, 2012, Synthesis, structural and electrical properties of Ti modified Bi2Sn2O7 pyrochlore, Phys. B Condens. Matter, 407, 3939, 10.1016/j.physb.2012.05.066 Wang, 2016, Hydrothermal synthesis and photocatalytic properties of pyrochlore Sm2Zr2O7 nanoparticles, J. Photochem. Photobiol. Chem., 321, 48, 10.1016/j.jphotochem.2016.01.011 Khachnaoui, 2018, Synthesis and magnetic properties of new pyrochlore Fe2Mn2O7 compound, J. Supercond. Nov. Magnetism, 31, 3803, 10.1007/s10948-018-4656-1 Raju, 1994, Magnetic, electrical, and small-angle neutron-scattering studies of possible long-range order in the pyrochlores Tl2Mn2O7 and In2Mn2O7, Phys. Rev. B, 49, 1086, 10.1103/PhysRevB.49.1086 Shimakawa, 1996, Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure, Nature, 379, 53, 10.1038/379053a0 Greedan, 1996, Structure and magnetic properties of the pyrochlore Sc2Mn2O7, Solid State Commun., 99, 399, 10.1016/0038-1098(96)00295-5 Khachnaoui, 2019, Appearance of griffiths-like phase in a new pyrochlore compound La2Mn2O7− δ, J. Supercond. Nov. Magnetism, 32, 2133, 10.1007/s10948-018-4934-y Griffiths, 1969, Nonanalytic behaviour above the critical point in a random Ising ferromagnet, Phys. Rev. Lett., 23, 17, 10.1103/PhysRevLett.23.17 Magen, 2006, Observation of a Griffiths-like phase in the magnetocaloric compound Tb5Si2Ge2, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.167201 Bouzerar, 2007, Effect of correlated disorder on the magnetism of double exchange systems, Phys. Rev. B, 76, 10.1103/PhysRevB.76.020401 Greedan, 2006, Frustrated rare earth magnetism: spin glasses, spin liquids and spin ices in pyrochlore oxides, J. Alloys Compd., 408, 444, 10.1016/j.jallcom.2004.12.084 Ehlers, 2012, Low energy spin dynamics in the spin ice Ho2Sn2O7, J. Phys. Condens. Matter, 24, 10.1088/0953-8984/24/7/076005 Yaouanc, 2011, Exotic transition in the three-dimensional spin-liquid candidate Tb2Ti2O7, Phys. Rev. B, 84, 10.1103/PhysRevB.84.184403 Raju, 1999, Transition to long-range magnetic order in the highly frustrated insulating pyrochlore antiferromagnet Gd2Ti2O7, Phys. Rev. B, 59, 10.1103/PhysRevB.59.14489 Gardner, 2010, Magnetic pyrochlore oxides, Rev. Mod. Phys., 82, 53, 10.1103/RevModPhys.82.53 Mydosh, 2015, Spin glasses: redux: an updated experimental/materials survey, Rep. Prog. Phys., 78, 10.1088/0034-4885/78/5/052501 Binder, 1986, Spin glasses: experimental facts, theoretical concepts, and open questions, Rev. Mod. Phys., 58, 801, 10.1103/RevModPhys.58.801 Ehlers, 2010, High-resolution neutron scattering study of Tb2Mo2O7: a geometrically frustrated spin glass, Phys. Rev. B, 81, 10.1103/PhysRevB.81.224405 Reimers, 1991, Short-range magnetic ordering in the highly frustrated pyrochlore Y2Mn2O7, Phys. Rev. B, 43, 3387, 10.1103/PhysRevB.43.3387 Zhou, 2008, Unconventional spin glass behaviour in the cubic pyrochlore Mn2Sb2O7, J. Phys. Condens. Matter, 20, 10.1088/0953-8984/20/32/325201 Wang, 2021, Spin glass feature and exchange bias effect in metallic Pt/antiferromagnetic LaMnO3 heterostructure, J. Phys. Condens. Matter, 33, 10.1088/1361-648X/ac0023 Zhigadlo, 2022, Spin-glass-like behaviour in SmFeAsO0.8F0.2, Mendeleev Commun., 32, 305, 10.1016/j.mencom.2022.05.004 Sahu, 2022, Spin–glass behaviour in Shastry–Sutherland lattice of Tm2Cu2In, J. Magn. Magn Mater., 543, 10.1016/j.jmmm.2021.168599 Ramirez, 1994, Strongly geometrically frustrated magnets, Annu. Rev. Mater. Sci., 24, 453, 10.1146/annurev.ms.24.080194.002321 Panwar, 2022, Low-temperature magnetic and magnetocaloric properties of manganese-substituted Gd0.5Er0.5CrO3 orthochromites, Crystals, 12, 263, 10.3390/cryst12020263 Krivoruchko, 2014, The Griffiths phase and the metal-insulator transition in substituted manganites, Low Temp. Phys., 40, 586, 10.1063/1.4890365 Pramanik, 2010, Griffiths phase and its evolution with Mn-site disorder in the half-doped manganite Pr0.5Sr0.5Mn1−yGayO3 (y= 0.0, 0.025, and 0.05), Phys. Rev. B, 81, 10.1103/PhysRevB.81.024431 Ahad, 2018, Griffiths-like phase and charge-spin glass state in La1.5Sr0.5CoO4, Appl. Phys. Lett., 113, 10.1063/1.5042750 Ouyang, 2011, Short-range ferromagnetic correlations in the spin-chain compound Ca3CoMnO 6, Phys. Rev. B, 84, 10.1103/PhysRevB.84.054435 Karmakar, 2013, A Griffiths-like phase in antiferromagnetic R0.5Eu0.5MnO3 (R= Pr, Nd, Sm), J. Phys. Condens. Matter, 25, 10.1088/0953-8984/25/6/066006 Karmakar, 2012, Observation of Griffiths phase in antiferromagnetic La0.32Eu0.68MnO3, J. Phys. Condens. Matter, 24, 10.1088/0953-8984/24/12/126003 Ouyang, 2006, Short-range anisotropic ferromagnetic correlations in the paramagnetic and antiferromagnetic phases of Gd5Ge4, Phys. Rev. B, 74, 10.1103/PhysRevB.74.094404 Tong, 2008, Griffiths phase and thermomagnetic irreversibility behaviour in slightly electron-doped manganites Sm1− xCaxMnO3 (0.80≤ x≤ 0.92), Phys. Rev. B, 77, 10.1103/PhysRevB.77.184432 Ghorai, 2021, Evolution of Griffiths phase and critical behaviour of La1-xPbxMnO3±y solid solutions, J. Phys. Condens. Matter, 33, 10.1088/1361-648X/abdd64 Banerjee, 1964, On a generalised approach to first and second order magnetic transitions, Phys. Lett., 12, 16, 10.1016/0031-9163(64)91158-8 Zhang, 2018, Cryogenic magnetic properties in the pyrochlore RE2TiMnO7 (RE= Dy and Ho) compounds, Ceram. Int., 44, 15681, 10.1016/j.ceramint.2018.05.239 Liu, 2018, Anisotropic magnetocaloric effect in single crystals of CrI3, Phys. Rev. B, 97, 10.1103/PhysRevB.97.174418 Franco, 2010, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials, Int. J. Refrig., 33, 465, 10.1016/j.ijrefrig.2009.12.019 Chung, 2023, Magnetocaloric properties of a wire composite of La (Fe,Mn,Si)13-H alloy powder in a Gd cylindrical tube, J. Alloys Compd., 947, 10.1016/j.jallcom.2023.169551 Biswas, 2013, The universal behaviour of inverse magnetocaloric effect in antiferromagnetic materials, J. Appl. Phys., 113, 17A902, 10.1063/1.4793768