Oblivious transfer and quantum channels as communication resources

Springer Science and Business Media LLC - Tập 12 - Trang 13-17 - 2012
Nicolas Gisin1, Sandu Popescu2, Valerio Scarani3, Stefan Wolf4, Jürg Wullschleger5
1Group of Applied Physics, University of Geneva, Geneva 4, Switzerland
2H.H. Wills Physics Laboratory, University of Bristol, Bristol, UK
3Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore
4Faculty of Informatics, University of Lugano, Lugano, Switzerland
5Department of Mathematics, University of Bristol, Bristol, UK

Tóm tắt

We show that from a communication-complexity perspective, the primitive called oblivious transfer—which was introduced in a cryptographic context—can be seen as the classical analogue to a quantum channel in the same sense as non-local boxes are of maximally entangled qubits. More explicitly, one realization of non-cryptographic oblivious transfer allows for the perfect simulation of sending one qubit and measuring it in an orthogonal basis. On the other hand, a qubit channel allows for realizing non-cryptographic oblivious transfer with probability roughly 85 %, whereas 75 % is the classical limit.

Tài liệu tham khảo

Ambainis A, Nayak A, Ta-Shma A, Vazirani U (1998) Dense quantum coding and a lower bound for 1-way quantum automata. quant-ph/9804043 Bell JS (1964) On the Einstein–Podolsky–Rosen paradox. Physics 1:195–200 Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W (1993) Teleporting an unknown quantum state via dual classical and EPR channels. Phys Rev Lett 70:1895–1899 Buhrman H, Christandl M, Unger F, Wehner S, Winter A (2006) Implications of superstrong nonlocality for cryptography. Proc R Soc A 462(2071):1919–1932, quant-ph/0504133 Cerf N, Gisin N, Massar S (2000) Classical teleportation of a quantum bit. Phys Rev Lett 84(11):2521–2524 Cerf N, Gisin N, Massar S, Popescu S (2005) Simulating maximal quantum entanglement without communication. Phys Rev Lett 94:220403 Devetak I, Harrow AW, Winter AJ (2004) A family of quantum protocols. Phys Rev Lett 93(23):230504 Devetak I, Harrow AW, Winter AJ (2008) A resource framework for quantum Shannon theory. IEEE Trans Inf Theory 54(10):4587–4618 Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 41:777–780 Gleason AM (1957) Measures on the closed subspaces of a Hilbert space. J Math Mech 6:885 Jauch JM, Piron C (1963) Can hidden variables be excluded in quantum mechanics? Helv Phys Acta 36:827 Kochen S, Specker E (1967) The problem of hidden variables in quantum mechanics. J Math Mech 17(1):59–87 Popescu S, Rohrlich D (1994) Quantum nonlocality as an axiom. Found Phys 24:379–385 Rabin M (1981) How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory Specker E (1960) Die Logik nicht gleichzeitig entscheidbarer Aussagen. Dialectica 14:239–246 Toner B, Bacon D (2003) Communication cost of simulating Bell correlations. Phys Rev Lett 91(18):187904 von Neumann J (1955) Mathematische Grundlagen der Quanten-Mechanik. Verlag Julius-Springer, Berlin, 1932. Mathematial foundations of quantum mechanics. Princeton University, Princeton Wiesner S (1983) Conjugate coding. Sigact News 15(1):78–88 Wolf S, Wullschleger J (2006) Oblivious transfer is symmetric. In: Advances in cryptology—EUROCRYPT ’06, volume 4004 of Lecture Notes in Computer Science. Springer, pp 222–232