Đánh giá lâm sàng khách quan về rung, chậm vận động và cứng cơ trong phẫu thuật thần kinh định vị khi bệnh nhân tỉnh: một tổng quan

Annemarie Smid1, Zeus T. Dominguez-Vega2, Teus van Laar2, D. L. Marinus Oterdoom1, Anthony R. Absalom3, Martje E. van Egmond2, Gea Drost2,1, J. Marc C. van Dijk1
1Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
2Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
3Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands

Tóm tắt

Rung, chậm vận động và cứng cơ là những triệu chứng vận động incapacitating có thể được kiểm soát bằng phương pháp điều trị phẫu thuật thần kinh định vị như kích thích não sâu (DBS) và phẫu thuật triệt tiêu (ví dụ: thalamotomy, pallidotomy). Truyền thống, các lâm sàng phụ thuộc vào thang điểm đánh giá lâm sàng để đánh giá nội soi các triệu chứng vận động này trong quá trình phẫu thuật thần kinh định vị khi bệnh nhân tỉnh. Tuy nhiên, các thang đo lâm sàng này có sự khác biệt khá lớn giữa các người đánh giá và phụ thuộc vào các người đánh giá có kinh nghiệm. Do đó, việc ghi chép khách quan (ví dụ: sử dụng cảm biến chuyển động) là một mở rộng hợp lý cho đánh giá nội soi về rung, chậm vận động và cứng cơ. Mục tiêu chính của tổng quan này là cung cấp cái nhìn tổng quan về các đo lường điện tử trong khi phẫu thuật thần kinh định vị khi bệnh nhân tỉnh. Quy trình được dựa trên mở rộng PRISMA cho các tổng quan. Sau khi tìm kiếm hệ thống trong cơ sở dữ liệu (PubMed, Embase và Web of Science), các bài báo được sàng lọc theo tính liên quan. Một trăm ba bài báo đã được sàng lọc chi tiết. Thông tin lâm sàng và kỹ thuật quan trọng đã được trích xuất. Tiêu chí bao gồm việc sử dụng các đo lường điện tử trong khi phẫu thuật thần kinh định vị được thực hiện dưới gây tê cục bộ. Hai mươi ba bài báo đã được đưa vào. Các nghiên cứu này có nhiều mục tiêu khác nhau, bao gồm việc tương quan các đo lường kết quả dựa trên cảm biến với điểm số lâm sàng, xác định vị trí điện cực DBS tối ưu, và chuyển đổi các đánh giá lâm sàng thành các đánh giá khách quan. Các nghiên cứu này có sự đa dạng cao về lựa chọn thiết bị, vị trí cảm biến, giao thức đo lường, thiết kế, các đo lường kết quả và phân tích dữ liệu. Tổng quan này chỉ ra rằng việc định lượng các triệu chứng vận động nội soi vẫn còn hạn chế bởi các kỹ thuật phân tích tín hiệu biến thiên và thiếu các giao thức đo lường tiêu chuẩn hóa. Tuy nhiên, các đo lường điện tử có thể bổ sung cho các đánh giá trực quan và cung cấp xác nhận khách quan về vị trí đúng đắn của điện cực DBS và/hoặc việc tạo tổn thương. Về lâu dài, điều này có thể mang lại lợi ích cho kết quả của bệnh nhân và cung cấp các đo lường kết quả đáng tin cậy trong nghiên cứu khoa học.

Từ khóa

#rung #chậm vận động #cứng cơ #phẫu thuật thần kinh định vị #đo lường điện tử #kích thích não sâu #phân tích dữ liệu

Tài liệu tham khảo

Abosch A, Lozano A (2003) Stereotactic neurosurgery for movement disorders. Can J Neurol Sci 30:S72–S82. https://doi.org/10.1017/s0317167100003279

Kremer NI, Pauwels RWJ, Pozzi NG, Lange F, Roothans J, Volkmann J, Reich MM (2021) Deep brain stimulation for tremor: Update on long-term outcomes, target considerations and future directions. J Clin Med 10:3468. https://doi.org/10.3390/jcm10163468

Asakawa T, Fang H, Sugiyama K, Nozaki T, Kobayashi S, Hong Z, Suzuki K, Mori N, Yang Y, Hua F, Ding G, Wen G, Namba H, Xia Y (2016) Human behavioral assessments in current research of Parkinson’s disease. Neurosci Biobehav Rev 68:741–772. https://doi.org/10.1016/j.neubiorev.2016.06.036

Erro R, Fasano A, Barone P, Bhatia KP (2022) Milestones in tremor research: 10 years later. Mov Disord Clin Pract 9:429–435. https://doi.org/10.1002/mdc3.13418

Kremer NI, Smid A, Lange SF, Mateus Marçal I, Tamasi K, van Dijk JMC, van Laar T, Drost G (2023) Supine MDS-UPDRS-III assessment: an explorative study. J Clin Med 12. https://doi.org/10.3390/jcm12093108

Lu R, Xu Y, Li X, Fan Y, Zeng W, Tan Y, Ren K, Chen W, Cao X (2020) Evaluation of wearable sensor devices in Parkinson’s disease: a review of current status and future prospects. Parkinsons Dis 2020. https://doi.org/10.1155/2020/4693019

Ossig C, Antonini A, Buhmann C, Classen J, Csoti I, Falkenburger B, Schwarz M, Winkler J, Storch A (2016) Wearable sensor-based objective assessment of motor symptoms in Parkinson’s disease. J Neural Transm 123:57–64. https://doi.org/10.1007/s00702-015-1439-8

Post B, Merkus MP, de Bie RMA, de Haan RJ, Speelman JD (2005) Unified Parkinson’s Disease Rating Scale motor examination: are ratings of nurses, residents in neurology, and movement disorders specialists interchangeable? Mov Disord 20:1577–1584. https://doi.org/10.1002/mds.20640

Rovini E, Maremmani C, Cavallo F (2017) How wearable sensors can support Parkinson’s disease diagnosis and treatment: A systematic review. Front Neurosci 11. https://doi.org/10.3389/fnins.2017.00555

Shulman LM, Gruber-Baldini AL, Anderson KE, Fishman PS, Reich SG, Weiner WJ (2010) The clinically important difference on the unified Parkinson’s disease rating scale. Arch Neurol 67:64–70

Smid A, Elting JWJ, van Dijk JMC, Otten B, Oterdoom DLM, Tamasi K, Heida C, van Laar T, Drost G (2022) Intraoperative quantification of MDS-UPDRS tremor measurements using 3D accelerometry (abstract 394). Mov Disord 37:S206. https://doi.org/10.1002/mds.29223

Smid A, Kremer NI, Lange SF, Mateus Marçal I, Tamasi K, van Dijk JMC, van Laar T, Drost G (2023) [Abstract 659] Peroperative Use of the MDS-UPDRS motor section: agreement between sitting and supine position. Mov Disord 38:S295–S295. https://doi.org/10.1002/mds.29541

Smid A, Pauwels RWJ, Elting JWJ, Everlo CSJ, van Dijk JMC, Oterdoom DLM, van Laar T, Tamasi K, van der Stouwe AMM (2023) Drost G (2023) A novel accelerometry method to perioperatively quantify essential tremor based on Fahn-Tolosa-Marin criteria. J Clin Med 12:4235. https://doi.org/10.3390/jcm12134235

Bobić V, Djurić-Jovičić M, Dragašević N, Popović MB, Kostić VS, Kvaščev G (2019) An expert system for quantification of bradykinesia based on wearable inertial sensors. Sensors (Switzerland) 19. https://doi.org/10.3390/s19112644

Elble RJ, Ondo W (2022) Tremor rating scales and laboratory tools for assessing tremor. J Neurol Sci 435. https://doi.org/10.1016/j.jns.2022.120202

Evers LJW, Krijthe JH, Meinders MJ, Bloem BR, Heskes TM (2019) Measuring Parkinson’s disease over time: the real-world within-subject reliability of the MDS-UPDRS. Mov Disord 34:1480–1487. https://doi.org/10.1002/mds.27790

Lukšys D, Jonaitis G, Griškevičius J (2018) Quantitative analysis of parkinsonian tremor in a clinical setting using inertial measurement units. Parkinsons Dis 2018:1–7. https://doi.org/10.1155/2018/1683831

Smid A, Oterdoom DLM, Pauwels RWJ, Tamasi K, Elting JWJ, Absalom AR, van Laar T, van Dijk JMC, Drost G (2023) [Abstract 1798] The added value of accelerometric monitoring during thalamotomy. Mov Disord 38:S793–S794. https://doi.org/10.1002/mds.29546

Wastensson G, Holmberg B, Johnels B, Barregard L (2013) Quantitative methods for evaluating the efficacy of thalamic deep brain stimulation in patients with essential tremor. Tremor and Other Hyperkinetic Movements 4. https://doi.org/10.7916/D8VM4B0N

Yang K, Xiong WX, Liu FT, Sun YM, Luo S, Ding ZT, Wu JJ, Wang J (2016) Objective and quantitative assessment of motor function in Parkinson’s disease-from the perspective of practical applications. Ann Transl Med 4. https://doi.org/10.21037/atm.2016.03.09

Martinez-Manzanera O, Roosma E, Beudel M, Borgemeester RWK, Van Laar T, Maurits NM (2016) A method for automatic and objective scoring of bradykinesia using orientation sensors and classification algorithms. IEEE Trans Biomed Eng 63:1016–1024. https://doi.org/10.1109/TBME.2015.2480242

Ferreira-sánchez MDR, Moreno-verdú M, Cano-de-la-cuerda R (2020) Quantitative measurement of rigidity in parkinson’s disease: A systematic review. Sensors (Switzerland) 20:880. https://doi.org/10.3390/s20030880

Maldonado-Naranjo A, Koop MM, Hogue O, Alberts J, MacHado A (2019) Kinematic metrics from a wireless stylus quantify tremor and bradykinesia in Parkinson’s disease. Parkinsons Dis 2019. https://doi.org/10.1155/2019/6850478

Oyama G, Burq M, Hatano T, Marks WJ, Kapur R, Fernandez J, Fujikawa K, Furusawa Y, Nakatome K, Rainaldi E, Chen C, Ho KC, Ogawa T, Kamo H, Oji Y, Takeshige-Amano H, Taniguchi D, Nakamura R, Sasaki F, Ueno S, Shiina K, Hattori A, Nishikawa N, Ishiguro M, Saiki S, Hayashi A, Motohashi M, Hattori N (2023) Analytical and clinical validity of wearable, multi-sensor technology for assessment of motor function in patients with Parkinson’s disease in Japan. Sci Rep 13:3600

Antonini A, Reichmann H, Gentile G, Garon M, Tedesco C, Frank A, Falkenburger B, Konitsiotis S, Tsamis K, Rigas G, Kostikis N, Ntanis A, Pattichis C (2023) Toward objective monitoring of Parkinson’s disease motor symptoms using a wearable device: wearability and performance evaluation of PDMonitor®. Front Neurol 14:1080752. https://doi.org/10.3389/fneur.2023.1080752

Maetzler W, Domingos J, Srulijes K, Ferreira JJ, Bloem BR (2013) Quantitative wearable sensors for objective assessment of Parkinson’s disease. Mov Disord 28:1628–1637. https://doi.org/10.1002/mds.25628

Sica M, Tedesco S, Crowe C, Kenny L, Moore K, Timmons S, Barton J, O’Flynn B, Komaris DS (2021) Continuous home monitoring of Parkinson’s disease using inertial sensors: a systematic review. PLoS One 16. https://doi.org/10.1371/journal.pone.0246528

Krishna V, Sammartino F, Agrawal P, Changizi BK, Bourekas E, Knopp MV, Rezai A (2019) Prospective tractography-based targeting for improved safety of focused ultrasound thalamotomy. Neurosurgery 84:160–168. https://doi.org/10.1093/neuros/nyy020

Sammartino F, Rege R, Krishna V (2020) Reliability of intraoperative testing during deep brain stimulation surgery. Neuromodulation 23:525–529. https://doi.org/10.1111/ner.13081

Zajki-Zechmeister T, Kögl M, Kalsberger K, Franthal S, Homayoon N, Katschnig-Winter P, Wenzel K, Zajki-Zechmeister L, Schwingenschuh P (2020) Quantification of tremor severity with a mobile tremor pen. Heliyon 6:e04702. https://doi.org/10.1016/j.heliyon.2020.e04702

Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, Raethjen J, Stamelou M, Testa CM, Deuschl G (2018) Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord 33:75–87. https://doi.org/10.1002/mds.27121

Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424

Centen LM, Oterdoom DLM, Tijssen MAJ, Lesman-Leegte I, van Egmond ME, van Dijk JMC (2021) Bilateral pallidotomy for dystonia: a systematic review. Mov Disord 36:547–557. https://doi.org/10.1002/mds.28384

Cersosimo MG, Raina GB, Benarroch EE, Piedimonte F, Alemán GG, Micheli FE (2009) Micro lesion effect of the globus pallidus internus and outcome with deep brain stimulation in patients with Parkinson’s disease and dystonia. Mov Disord 24:1488–1493. https://doi.org/10.1002/mds.22641

Chen KHS, Chen R (2019) Invasive and noninvasive brain stimulation in Parkinson’s disease: clinical effects and future perspectives. Clin Pharmacol Ther 106:763–775. https://doi.org/10.1002/cpt.1542

Dallapiazza RF, Lee DJ, de Vloo P, Fomenko A, Hamani C, Hodaie M, Kalia SK, Fasano A, Lozano AM (2019) Outcomes from stereotactic surgery for essential tremor. J Neurol Neurosurg Psychiatry 90:474–482. https://doi.org/10.1136/jnnp-2018-318240

Deuschl G, Raethjen J, Hellriegel H, Elble R (2011) Treatment of patients with essential tremor. Lancet Neurol 10:148–161

Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, Schwartz M, Hynynen K, Lozano AM, Shah BB, Huss D, Dallapiazza RF, Gwinn R, Witt J, Ro S, Eisenberg HM, Fishman PS, Gandhi D, Halpern CH, Chuang R, Butts Pauly K, Tierney TS, Hayes MT, Cosgrove GR, Yamaguchi T, Abe K, Taira T, Chang JW (2016) A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 375:730–739. https://doi.org/10.1056/NEJMoa1600159

Erdogan S, Savas A, Aydin N, Akbostanci MC (2020) Predictive factors for favorable outcome from subthalamic nucleus deep brain stimulation in Parkinson’s Disease. Turk Neurosurg 30:43–47. https://doi.org/10.5137/1019-5149.JTN.25028-18.3

Lange SF, Kremer NI, van Laar T, Lange F, Steendam-Oldekamp TE, Oterdoom DLM, Absalom AR, van Dijk JMC, Drost G (2021) The intraoperative microlesion effect positively correlates with the short-term clinical effect of deep brain stimulation in Parkinson’s disease. Neuromodulation 26:459–465. https://doi.org/10.1111/ner.13523

Pourfar M, Tang C, Lin T, Dhawan V, Kaplitt MG, Eidelberg DD (2009) Assessing the microlesion effect of subthalamic deep brain stimulation surgery with FDG PET: clinical article. J Neurosurg 110:1278–1282. https://doi.org/10.3171/2008.12.JNS08991

Alterman RL, Kall BA, Cohen H, Kelly PJ (1995) Stereotactic ventrolateral thalamotomy: is ventriculography necessary? Neurosurgery 37:717–722. https://doi.org/10.1227/00006123-199510000-00016

Mahajan A, Bader A, Wang LL, Rekhtman A, Espay AJ, Dwivedi AK, Sturchio A, Marsili L, Duker AP, Krishna V, Mandybur GT, Merola A (2020) Thalamic Deep Brain Stimulation for tremor: the critical role of intraoperative testing. Parkinsonism Relat Disord 73:45–49. https://doi.org/10.1016/j.parkreldis.2020.03.022

Goetz CG, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stebbins GT, Stern MB, Tilley BC, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, Lewitt PA, Nyenhuis D, Olanow W, Rascol O, Schrag A, Teresi JA, Van Hilten JJ, Lapelle N (2019) The MDS-sponsored revision of the unified Parkinson’s disease rating scale. In: MDS_UPDRS_Updated_August2019. www.movementdisorders.org. Accessed 26 Sep 2022

Fahn S, Tolosa E, Marín C (1988) Clinical rating scale for tremor. Parkinson’s disease and movement disorders 225–234

Haubenberger D, Abbruzzese G, Bain PG, Bajaj N, Benito-León J, Bhatia KP, Deuschl G, Forjaz MJ, Hallett M, Louis ED, Lyons KE, Mestre TA, Raethjen J, Stamelou M, Tan EK, Testa CM, Elble RJ (2016) Transducer-based evaluation of tremor. Mov Disord 31:1327–1336. https://doi.org/10.1002/mds.26671

Elble RJ, McNames J (2016) Using portable transducers to measure tremor severity. Tremor and other hyperkinetic movements 6:375. https://doi.org/10.7916/D8DR2VCC

Jackson L, Klassen BT, Hassan A, Bower JH, Matsumoto JY, Coon EA, Ali F (2021) Utility of tremor electrophysiology studies. Clin Park Relat Disord 5. https://doi.org/10.1016/j.prdoa.2021.100108

Journee HL, Postma AA, Staal MJ (2007) Intraoperative neurophysiological assessment of disabling symptoms in DBS surgery. Neurophysiol Clin 37:467–475. https://doi.org/10.1016/j.neucli.2007.10.006

van der Stouwe AMM, Elting JW, van der Hoeven JH, van Laar T, Leenders KL, Maurits NM, Tijssen MAJ (2016) How typical are ‘typical’ tremor characteristics? Sensitivity and specificity of five tremor phenomena. Parkinsonism Relat Disord 30:23–28. https://doi.org/10.1016/j.parkreldis.2016.06.008

Rissanen SM, Kankaanpää M, Tarvainen MP, Novak V, Novak P, Hu K, Manor B, Airaksinen O, Karjalainen PA (2011) Analysis of EMG and acceleration signals for quantifying the effects of deep brain stimulation in Parkinsons disease. IEEE Trans Biomed Eng 58:2545–2553. https://doi.org/10.1109/TBME.2011.2159380

A DFV, He T, Redoute J-M, Lee C, Yuce MR (2022) Flexible forearm triboelectric sensors for parkinson’s disease diagnosing and monitoring. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, pp 4909–4912

Elble RJ, Pullman SL, Matsumoto JY, Raethjen J, Deuschl G, Tintner R (2006) Tremor amplitude is logarithmically related to 4- and 5-point tremor rating scales. Brain 129:2660–2666. https://doi.org/10.1093/brain/awl190

Sievänen H, Kujala UM (2017) Accelerometry - simple, but challenging. Scand J Med Sci Sports 27:574–578. https://doi.org/10.1111/sms.12887

van Brummelen EMJ, Ziagkos D, de Boon WMI, Hart EP, Doll RJ, Huttunen T, Kolehmainen P, Groeneveld GJ (2020) Quantification of tremor using consumer product accelerometry is feasible in patients with essential tremor and Parkinson’s disease: a comparative study. J Clin Mov Disord 7. https://doi.org/10.1186/s40734-020-00086-7

Salarian A, Russmann H, Wider C, Burkhard PR, Vingerhoets FJG, Aminian K (2007) Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans Biomed Eng 54:313–322. https://doi.org/10.1109/TBME.2006.886670

Aminian K, Najafi B (2004) Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications. Comput Animat Virtual Worlds 15:79–94. https://doi.org/10.1002/cav.2

Passaro VMN, Cuccovillo A, Vaiani L, de Carlo M, Campanella CE (2017) Gyroscope technology and applications: a review in the industrial perspective. Sensors, Switzerland, 17:2284. https://doi.org/10.3390/s17102284

Elble RJ, Hellriegel H, Raethjen J, Deuschl G (2017) Assessment of head tremor with accelerometers versus gyroscopic transducers. Mov Disord Clin Pract 4:205–211. https://doi.org/10.1002/mdc3.12379

Rigas G, Tzallas AT, Tsipouras MG, Bougia P, Tripoliti EE, Baga D, Fotiadis DI, Tsouli SG, Konitsiotis S (2012) Assessment of tremor activity in the Parkinson’s disease using a set of wearable sensors. IEEE Trans Inf Technol Biomed 16:478–487. https://doi.org/10.1109/TITB.2011.2182616

Tsipouras MG, Tzallas AT, Rigas G, Tsouli S, Fotiadis DI, Konitsiotis S (2012) An automated methodology for levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals. Artif Intell Med 55:127–135. https://doi.org/10.1016/j.artmed.2012.03.003

Milner-Brown HS, Fisher MA, Weiner WJ (1979) Electrical properties of motor units in Parkinsonism and a possible relationship with bradykinesia. J Neurol Neurosurg Psychiatry 42:35–41. https://doi.org/10.1136/jnnp.42.1.35

Salarian A, Russmann H, Vingerhoets FJG, Burkhard PR, Aminian K (2007) Ambulatory monitoring of physical activities in patients with Parkinson’s disease. IEEE Trans Biomed Eng 54:2296–2299. https://doi.org/10.1109/TBME.2007.896591

Bank PJM, Marinus J, Meskers CGM, de Groot JH, van Hilten JJ (2017) Optical hand tracking: a novel technique for the assessment of bradykinesia in Parkinson’s disease. Mov Disord Clin Pract 4:875–883. https://doi.org/10.1002/mdc3.12536

Kim MJ, Naydanova E, Hwang BY, Mills KA, Anderson WS, Salimpour Y (2020) Quantification of Parkinson’s disease motor symptoms: a wireless motion sensing approach. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, pp 3658–3661

Weichert F, Bachmann D, Rudak B, Fisseler D (2013) Analysis of the accuracy and robustness of the Leap Motion Controller. Sensors (Switzerland) 13:6380–6393. https://doi.org/10.3390/s130506380

Yokoe M, Okuno R, Hamasaki T, Kurachi Y, Akazawa K, Sakoda S (2009) Opening velocity, a novel parameter, for finger tapping test in patients with Parkinson’s disease. Parkinsonism Relat Disord 15:440–444. https://doi.org/10.1016/j.parkreldis.2008.11.003

Teshuva I, Hillel I, Gazit E, Giladi N, Mirelman A, Hausdorff JM (2019) Using wearables to assess bradykinesia and rigidity in patients with Parkinson’s disease: a focused, narrative review of the literature. J Neural Transm 126:699–710. https://doi.org/10.1007/s00702-019-02017-9

Levin J, Krafzcyk S, Valkovič P, Eggert T, Claassen J, Bötzel K (2009) Objective measurement of muscle rigidity in Parkinsonian patients treated with subthalamic stimulation. Mov Disord 24:57–63. https://doi.org/10.1002/mds.22291

Powell D, Joseph Threlkeld A, Fang X, Muthumani A, Xia R (2012) Amplitude- and velocity-dependency of rigidity measured at the wrist in Parkinson’s disease. Clin Neurophysiol 123:764–773. https://doi.org/10.1016/j.clinph.2011.08.004

Assis S, Costa P, Rosas MJ, Vaz R, Silva Cunha JP (2016) An adaptive model approach for quantitative wrist rigidity evaluation during deep brain stimulation surgery. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 5809–5812

Costa P, Rosas MJ, Vaz R, Cunha JP (2015) Wrist rigidity assessment during deep brain stimulation surgery. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 3423–3426

Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akl EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garritty C, Lewin S, Godfrey CM, MacDonald MT, Langlois EV, Soares-Weiser K, Moriarty J, Clifford T, Tunçalp Ö, Straus SE (2018) PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med 169:467–473. https://doi.org/10.7326/M18-0850

Landy HJ, Weiner WJ, Calancie B, Harris W, Shulman LM, Singer C, Abrams L, Bowen B (2000) Electromyography during stereotactic pallidotomy for Parkinson’s disease. Stereotact Funct Neurosurg 74:21–29

Koop MM, Andrzejewski A, Hill BC, Heit G, Bronte-Stewart HM (2006) Improvement in a quantitative measure of bradykinesia after microelectrode recording in patients with Parkinson’s disease during deep brain stimulation surgery. Mov Disord 21:673–678. https://doi.org/10.1002/mds.20796

Papapetropoulos S, Jagid JR, Sengun C, Singer C, Gallo BV (2008) Objective monitoring of tremor and bradykinesia during DBS surgery for Parkinson disease. Neurology 70:1244–1249

Papapetropoulos S, Gallo BV, Guevara A, Singer C, Mitsi G, Lyssikatos C, Jagid JR (2009) Objective tremor registration during DBS surgery for essential tremor. Clin Neurol Neurosurg 111:376–379. https://doi.org/10.1016/j.clineuro.2008.10.017

Waldau B, Clayton DA, Gasperson LB, Turner DA (2011) Analysis of the time course of the effect of subthalamic nucleus stimulation upon hand function in Parkinson’s patients. Stereotact Funct Neurosurg 89:48–55. https://doi.org/10.1159/000323340

Florin E, Himmel M, Reck C, Maarouf M, Schnitzler A, Sturm V, Fink GR, Timmermann L (2012) Subtype-specific statistical causalities in parkinsonian tremor. Neuroscience 210:353–362. https://doi.org/10.1016/j.neuroscience.2012.02.045

Kwon Y, Park SH, Kim JW, Ho Y, Jeon HM, Bang MJ, Koh SB, Kim JH, Eom GM (2014) Quantitative evaluation of parkinsonian rigidity during intra-operative deep brain stimulation. Biomed Mater Eng 24:2273–2281. https://doi.org/10.3233/BME-141040

Hemm S, Pison D, Alonso F, Shah A, Coste J, Lemaire JJ, Wårdell K, Merello M, Shaikh AG, Min HK (2016) Patient-specific electric field simulations and acceleration measurements for objective analysis of intraoperative stimulation tests in the thalamus. Front Hum Neurosci 10. https://doi.org/10.3389/fnhum.2016.00577

Florin E, Pfeifer J, Visser-Vandewalle V, Schnitzler A, Timmermann L (2016) Parkinson subtype-specific Granger-causal coupling and coherence frequency in the subthalamic area. Neuroscience 332:170–180. https://doi.org/10.1016/j.neuroscience.2016.06.052

Shah A, Coste J, Lemaire JJ, Taub E, Schüpbach WMM, Pollo C, Schkommodau E, Guzman R, Hemm-Ode S (2017) Intraoperative acceleration measurements to quantify improvement in tremor during deep brain stimulation surgery. Med Biol Eng Comput 55:845–858. https://doi.org/10.1007/s11517-016-1559-9

Shah A, Coste J, Lemaire JJ, Schkommodau E, Taub E, Guzman R, Derost P, Hemm S (2017) A novel assistive method for rigidity evaluation during deep brain stimulation surgery using acceleration sensors. J Neurosurg 127:602–612. https://doi.org/10.3171/2016.8.JNS152770

Milosevic L, Kalia SK, Hodaie M, Lozano AM, Popovic MR, Hutchison WD (2018) Physiological mechanisms of thalamic ventral intermediate nucleus stimulation for tremor suppression. Brain 141:2142–2155. https://doi.org/10.1093/brain/awy139

Schaeffer EL, Liu DY, Guerin J, Ahn M, Lee S, Asaad WF (2018) A low-cost solution for quantification of movement during DBS surgery. J Neurosci Methods 303:136–145. https://doi.org/10.1016/j.jneumeth.2018.03.013

Shah A, Vogel D, Alonso F, Lemaire JJ, Pison D, Coste J, Wårdell K, Schkommodau E, Hemm S (2020) Stimulation maps: visualization of results of quantitative intraoperative testing for deep brain stimulation surgery. Med Biol Eng Comput 58:771–784. https://doi.org/10.1007/s11517-020-02130-y

Wang KL, Burns M, Xu D, Hu W, Fan SY, Han CL, Wang Q, Michitomo S, Xia XT, Zhang JG, Wang F, Meng FG (2020) Electromyography biomarkers for quantifying the intraoperative efficacy of deep brain stimulation in Parkinson’s patients with resting tremor. Front Neurol 11. https://doi.org/10.3389/fneur.2020.00142

Lopes EM, Vilas-Boas MDC, Dias D, Rosas MJ, Vaz R, Cunha JPS (2020) IHandU: A novel quantitative wrist rigidity evaluation device for deep brain stimulation surgery. Sensors (Switzerland) 20. https://doi.org/10.3390/s20020331

Wu J, Yu N, Yu Y, Li H, Wu F, Yang Y, Lin J, Han J, Liang S (2021) Intraoperative quantitative measurements for bradykinesia evaluation during deep brain stimulation surgery using leap motion controller: A Pilot Study. Parkinsons Dis 2021. https://doi.org/10.1155/2021/6639762

Kremer NI, Oterdoom DLM, Absalom AR, ten Cate DW, van Dijk JMC, van Egmond ME, Drost G (2021) Are we on the right track in DBS surgery for dystonic head tremor? Polymyography is a promising answer. Parkinsonism Relat Disord 93:74–76. https://doi.org/10.1016/j.parkreldis.2021.11.013

Smid A, Elting JWJ, van Dijk JMC, Otten B, Oterdoom DLM, Tamasi K, Heida T, van Laar T, Drost G (2022) Intraoperative quantification of MDS-UPDRS tremor measurements using 3D accelerometry: a pilot study. J Clin Med 11:2275. https://doi.org/10.3390/jcm11092275

Yu N, Yu Y, Lin J, Yang Y, Wu J, Liang S, Wu J, Han J (2022) A non-contact system for intraoperative quantitative assessment of bradykinesia in deep brain stimulation surgery. Comput Methods Programs Biomed 225. https://doi.org/10.1016/j.cmpb.2022.107005

Baek H, Chen J, Lockwood D, Obusez E, Poturalski M, Nagel SJ, Jones SE (2023) Feasibility of magnetic resonance–compatible accelerometers to monitor tremor fluctuations during magnetic resonance–guided focused ultrasound thalamotomy: technical note. operative neurosurgery. https://doi.org/10.1227/ons.0000000000000638

Smid A, Oterdoom DLM, Pauwels RWJ, Tamasi K, Elting JWJ, Absalom AR, van Laar T, van Dijk JMC, Drost G (2023) The relevance of intraoperative clinical and accelerometric measurements for thalamotomy outcome. J Clin Med 12:5887. https://doi.org/10.3390/jcm12185887

Glowinsky S, Bergman H, Zarchi O, Fireman S, Reiner J, Tamir I (2023) Electrophysiology-aided DBS targeting the ventral intermediate nucleus in an essential tremor patient with MRI-incompatible lead: a case report. Physiol Rep 11:e15730. https://doi.org/10.14814/phy2.15730

Kostikis N, Hristu-Varsakelis D, Arnaoutoglou M, Kotsavasiloglou C (2015) A smartphone-based tool for assessing parkinsonian hand tremor. IEEE J Biomed Health Inform 19:1835–1842. https://doi.org/10.1109/JBHI.2015.2471093

Kim JS (2001) Delayed onset mixed involuntary movements after thalamic stroke: clinical, radiological and pathophysiological findings. Brain 124:299–309. https://doi.org/10.1093/brain/124.2.299

Lehéricy S, Grand; S, Pollak; P, Poupon; F, Le Bas J-F, Limousin; P, Jedynak; P, Marsault; C, Agid; Y, Vidailhet M, (2001) Clinical characteristics and topography of lesions in movement disorders due to thalamic lesions. Neurology 57:1055–1066. https://doi.org/10.1212/wnl.57.6.1055

Raina GB, Cersosimo MG, Folgar SS, Giugni JC, Calandra C, Paviolo JP, Tkachuk VA, Ramirez CZ, Tschopp AL, Calvo DS, Pellene LA, Uribe Roca MC, Velez M, Giannaula RJ, Fernandez Pardal MM, Micheli FE (2016) Holmes tremor clinical description, lesion localization, and treatment in a series of 29 cases. American Academy of Neurology 86:931–938

Starr PA (2013) Deep brain stimulation for other tremors, myoclonus, and chorea. In: Handbook of clinical neurology. pp 209–215

Garcia-Agundez A, Eickhoff C (2021) Towards objective quantification of hand tremors and bradykinesia using contactless sensors: a systematic review. Front Aging Neurosci 13. https://doi.org/10.3389/fnagi.2021.716102

Khodakarami H, Farzanehfar P, Horne M (2019) The use of data from the Parkinson’s kinetigraph to identify potential candidates for device assisted therapies. Sensors (Switzerland) 19. https://doi.org/10.3390/s19102241

Legros A, Diakonova N, Cif L, Hemm S, Vayssière N, Coubes P, Beuter A (2004) Accelerometric measurement of involuntary movements during pallidal deep brain stimulation of patients with generalized dystonia. Brain Res Bull 64:363–369. https://doi.org/10.1016/j.brainresbull.2004.09.002

Lieber B, Taylor BES, Appelboom G, Mckhann G, Connolly ES (2015) Motion sensors to assess and monitor medical and surgical management of Parkinson disease. World Neurosurg 84:561–566. https://doi.org/10.1016/j.wneu.2015.03.024

Obwegeser AA, Uitti RJ, Witte RJ, Lucas JA, Turk MF, Wharen RE (2001) Quantitative and qualitative outcome measures after thalamic deep brain stimulation to treat disabling tremors. Neurosurgery 48:274–281. https://doi.org/10.1097/00006123-200102000-00004

Pulliam CL, Heldman DA, Orcutt TH, Mera TO, Giuffrida JP, Vitek JL (2015) Motion sensor strategies for automated optimization of deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord 21:378–382. https://doi.org/10.1016/j.parkreldis.2015.01.018

Rüegge D, Mahendran S, Stieglitz LH, Oertel MF, Gassert R, Lambercy O, Baumann CR, Imbach LL (2020) Tremor analysis with wearable sensors correlates with outcome after thalamic deep brain stimulation. Clin Park Relat Disord 3. https://doi.org/10.1016/j.prdoa.2020.100066

Ferleger BI, Houston B, Thompson MC, Cooper SS, Sonnet KS, Ko AL, Herron JA, Chizeck HJ (2020) Fully implanted adaptive deep brain stimulation in freely moving essential tremor patients. J Neural Eng 17:056026. https://doi.org/10.1088/1741-2552/abb416

Piña-Fuentes D, van Dijk JMC, van Zijl JC, Moes HR, van Laar T, Oterdoom DLM, Little S, Brown P, Beudel M (2020) Acute effects of adaptive deep brain stimulation in Parkinson’s disease. Brain Stimul 13:1507–1516. https://doi.org/10.1016/j.brs.2020.07.016

Carroll C, Kobylecki C, Silverdale M, Thomas C (2019) Impact of quantitative assessment of Parkinson’s disease-associated symptoms using wearable technology on treatment decisions. J Parkinsons Dis 9:601. https://doi.org/10.3233/jpd-191623

Santiago A, Langston JW, Gandhy R, Dhall R, Brillman S, Rees L, Barlow C (2019) Qualitative evaluation of the personal kinetigraph TM movement recording system in a Parkinson’s clinic. J Parkinsons Dis 9:207–219. https://doi.org/10.3233/JPD-181373