Đánh giá lâm sàng khách quan về rung, chậm vận động và cứng cơ trong phẫu thuật thần kinh định vị khi bệnh nhân tỉnh: một tổng quan
Tóm tắt
Từ khóa
#rung #chậm vận động #cứng cơ #phẫu thuật thần kinh định vị #đo lường điện tử #kích thích não sâu #phân tích dữ liệuTài liệu tham khảo
Abosch A, Lozano A (2003) Stereotactic neurosurgery for movement disorders. Can J Neurol Sci 30:S72–S82. https://doi.org/10.1017/s0317167100003279
Kremer NI, Pauwels RWJ, Pozzi NG, Lange F, Roothans J, Volkmann J, Reich MM (2021) Deep brain stimulation for tremor: Update on long-term outcomes, target considerations and future directions. J Clin Med 10:3468. https://doi.org/10.3390/jcm10163468
Asakawa T, Fang H, Sugiyama K, Nozaki T, Kobayashi S, Hong Z, Suzuki K, Mori N, Yang Y, Hua F, Ding G, Wen G, Namba H, Xia Y (2016) Human behavioral assessments in current research of Parkinson’s disease. Neurosci Biobehav Rev 68:741–772. https://doi.org/10.1016/j.neubiorev.2016.06.036
Erro R, Fasano A, Barone P, Bhatia KP (2022) Milestones in tremor research: 10 years later. Mov Disord Clin Pract 9:429–435. https://doi.org/10.1002/mdc3.13418
Kremer NI, Smid A, Lange SF, Mateus Marçal I, Tamasi K, van Dijk JMC, van Laar T, Drost G (2023) Supine MDS-UPDRS-III assessment: an explorative study. J Clin Med 12. https://doi.org/10.3390/jcm12093108
Lu R, Xu Y, Li X, Fan Y, Zeng W, Tan Y, Ren K, Chen W, Cao X (2020) Evaluation of wearable sensor devices in Parkinson’s disease: a review of current status and future prospects. Parkinsons Dis 2020. https://doi.org/10.1155/2020/4693019
Ossig C, Antonini A, Buhmann C, Classen J, Csoti I, Falkenburger B, Schwarz M, Winkler J, Storch A (2016) Wearable sensor-based objective assessment of motor symptoms in Parkinson’s disease. J Neural Transm 123:57–64. https://doi.org/10.1007/s00702-015-1439-8
Post B, Merkus MP, de Bie RMA, de Haan RJ, Speelman JD (2005) Unified Parkinson’s Disease Rating Scale motor examination: are ratings of nurses, residents in neurology, and movement disorders specialists interchangeable? Mov Disord 20:1577–1584. https://doi.org/10.1002/mds.20640
Rovini E, Maremmani C, Cavallo F (2017) How wearable sensors can support Parkinson’s disease diagnosis and treatment: A systematic review. Front Neurosci 11. https://doi.org/10.3389/fnins.2017.00555
Shulman LM, Gruber-Baldini AL, Anderson KE, Fishman PS, Reich SG, Weiner WJ (2010) The clinically important difference on the unified Parkinson’s disease rating scale. Arch Neurol 67:64–70
Smid A, Elting JWJ, van Dijk JMC, Otten B, Oterdoom DLM, Tamasi K, Heida C, van Laar T, Drost G (2022) Intraoperative quantification of MDS-UPDRS tremor measurements using 3D accelerometry (abstract 394). Mov Disord 37:S206. https://doi.org/10.1002/mds.29223
Smid A, Kremer NI, Lange SF, Mateus Marçal I, Tamasi K, van Dijk JMC, van Laar T, Drost G (2023) [Abstract 659] Peroperative Use of the MDS-UPDRS motor section: agreement between sitting and supine position. Mov Disord 38:S295–S295. https://doi.org/10.1002/mds.29541
Smid A, Pauwels RWJ, Elting JWJ, Everlo CSJ, van Dijk JMC, Oterdoom DLM, van Laar T, Tamasi K, van der Stouwe AMM (2023) Drost G (2023) A novel accelerometry method to perioperatively quantify essential tremor based on Fahn-Tolosa-Marin criteria. J Clin Med 12:4235. https://doi.org/10.3390/jcm12134235
Bobić V, Djurić-Jovičić M, Dragašević N, Popović MB, Kostić VS, Kvaščev G (2019) An expert system for quantification of bradykinesia based on wearable inertial sensors. Sensors (Switzerland) 19. https://doi.org/10.3390/s19112644
Elble RJ, Ondo W (2022) Tremor rating scales and laboratory tools for assessing tremor. J Neurol Sci 435. https://doi.org/10.1016/j.jns.2022.120202
Evers LJW, Krijthe JH, Meinders MJ, Bloem BR, Heskes TM (2019) Measuring Parkinson’s disease over time: the real-world within-subject reliability of the MDS-UPDRS. Mov Disord 34:1480–1487. https://doi.org/10.1002/mds.27790
Lukšys D, Jonaitis G, Griškevičius J (2018) Quantitative analysis of parkinsonian tremor in a clinical setting using inertial measurement units. Parkinsons Dis 2018:1–7. https://doi.org/10.1155/2018/1683831
Smid A, Oterdoom DLM, Pauwels RWJ, Tamasi K, Elting JWJ, Absalom AR, van Laar T, van Dijk JMC, Drost G (2023) [Abstract 1798] The added value of accelerometric monitoring during thalamotomy. Mov Disord 38:S793–S794. https://doi.org/10.1002/mds.29546
Wastensson G, Holmberg B, Johnels B, Barregard L (2013) Quantitative methods for evaluating the efficacy of thalamic deep brain stimulation in patients with essential tremor. Tremor and Other Hyperkinetic Movements 4. https://doi.org/10.7916/D8VM4B0N
Yang K, Xiong WX, Liu FT, Sun YM, Luo S, Ding ZT, Wu JJ, Wang J (2016) Objective and quantitative assessment of motor function in Parkinson’s disease-from the perspective of practical applications. Ann Transl Med 4. https://doi.org/10.21037/atm.2016.03.09
Martinez-Manzanera O, Roosma E, Beudel M, Borgemeester RWK, Van Laar T, Maurits NM (2016) A method for automatic and objective scoring of bradykinesia using orientation sensors and classification algorithms. IEEE Trans Biomed Eng 63:1016–1024. https://doi.org/10.1109/TBME.2015.2480242
Ferreira-sánchez MDR, Moreno-verdú M, Cano-de-la-cuerda R (2020) Quantitative measurement of rigidity in parkinson’s disease: A systematic review. Sensors (Switzerland) 20:880. https://doi.org/10.3390/s20030880
Maldonado-Naranjo A, Koop MM, Hogue O, Alberts J, MacHado A (2019) Kinematic metrics from a wireless stylus quantify tremor and bradykinesia in Parkinson’s disease. Parkinsons Dis 2019. https://doi.org/10.1155/2019/6850478
Oyama G, Burq M, Hatano T, Marks WJ, Kapur R, Fernandez J, Fujikawa K, Furusawa Y, Nakatome K, Rainaldi E, Chen C, Ho KC, Ogawa T, Kamo H, Oji Y, Takeshige-Amano H, Taniguchi D, Nakamura R, Sasaki F, Ueno S, Shiina K, Hattori A, Nishikawa N, Ishiguro M, Saiki S, Hayashi A, Motohashi M, Hattori N (2023) Analytical and clinical validity of wearable, multi-sensor technology for assessment of motor function in patients with Parkinson’s disease in Japan. Sci Rep 13:3600
Antonini A, Reichmann H, Gentile G, Garon M, Tedesco C, Frank A, Falkenburger B, Konitsiotis S, Tsamis K, Rigas G, Kostikis N, Ntanis A, Pattichis C (2023) Toward objective monitoring of Parkinson’s disease motor symptoms using a wearable device: wearability and performance evaluation of PDMonitor®. Front Neurol 14:1080752. https://doi.org/10.3389/fneur.2023.1080752
Maetzler W, Domingos J, Srulijes K, Ferreira JJ, Bloem BR (2013) Quantitative wearable sensors for objective assessment of Parkinson’s disease. Mov Disord 28:1628–1637. https://doi.org/10.1002/mds.25628
Sica M, Tedesco S, Crowe C, Kenny L, Moore K, Timmons S, Barton J, O’Flynn B, Komaris DS (2021) Continuous home monitoring of Parkinson’s disease using inertial sensors: a systematic review. PLoS One 16. https://doi.org/10.1371/journal.pone.0246528
Krishna V, Sammartino F, Agrawal P, Changizi BK, Bourekas E, Knopp MV, Rezai A (2019) Prospective tractography-based targeting for improved safety of focused ultrasound thalamotomy. Neurosurgery 84:160–168. https://doi.org/10.1093/neuros/nyy020
Sammartino F, Rege R, Krishna V (2020) Reliability of intraoperative testing during deep brain stimulation surgery. Neuromodulation 23:525–529. https://doi.org/10.1111/ner.13081
Zajki-Zechmeister T, Kögl M, Kalsberger K, Franthal S, Homayoon N, Katschnig-Winter P, Wenzel K, Zajki-Zechmeister L, Schwingenschuh P (2020) Quantification of tremor severity with a mobile tremor pen. Heliyon 6:e04702. https://doi.org/10.1016/j.heliyon.2020.e04702
Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, Raethjen J, Stamelou M, Testa CM, Deuschl G (2018) Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord 33:75–87. https://doi.org/10.1002/mds.27121
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424
Centen LM, Oterdoom DLM, Tijssen MAJ, Lesman-Leegte I, van Egmond ME, van Dijk JMC (2021) Bilateral pallidotomy for dystonia: a systematic review. Mov Disord 36:547–557. https://doi.org/10.1002/mds.28384
Cersosimo MG, Raina GB, Benarroch EE, Piedimonte F, Alemán GG, Micheli FE (2009) Micro lesion effect of the globus pallidus internus and outcome with deep brain stimulation in patients with Parkinson’s disease and dystonia. Mov Disord 24:1488–1493. https://doi.org/10.1002/mds.22641
Chen KHS, Chen R (2019) Invasive and noninvasive brain stimulation in Parkinson’s disease: clinical effects and future perspectives. Clin Pharmacol Ther 106:763–775. https://doi.org/10.1002/cpt.1542
Dallapiazza RF, Lee DJ, de Vloo P, Fomenko A, Hamani C, Hodaie M, Kalia SK, Fasano A, Lozano AM (2019) Outcomes from stereotactic surgery for essential tremor. J Neurol Neurosurg Psychiatry 90:474–482. https://doi.org/10.1136/jnnp-2018-318240
Deuschl G, Raethjen J, Hellriegel H, Elble R (2011) Treatment of patients with essential tremor. Lancet Neurol 10:148–161
Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, Schwartz M, Hynynen K, Lozano AM, Shah BB, Huss D, Dallapiazza RF, Gwinn R, Witt J, Ro S, Eisenberg HM, Fishman PS, Gandhi D, Halpern CH, Chuang R, Butts Pauly K, Tierney TS, Hayes MT, Cosgrove GR, Yamaguchi T, Abe K, Taira T, Chang JW (2016) A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 375:730–739. https://doi.org/10.1056/NEJMoa1600159
Erdogan S, Savas A, Aydin N, Akbostanci MC (2020) Predictive factors for favorable outcome from subthalamic nucleus deep brain stimulation in Parkinson’s Disease. Turk Neurosurg 30:43–47. https://doi.org/10.5137/1019-5149.JTN.25028-18.3
Lange SF, Kremer NI, van Laar T, Lange F, Steendam-Oldekamp TE, Oterdoom DLM, Absalom AR, van Dijk JMC, Drost G (2021) The intraoperative microlesion effect positively correlates with the short-term clinical effect of deep brain stimulation in Parkinson’s disease. Neuromodulation 26:459–465. https://doi.org/10.1111/ner.13523
Pourfar M, Tang C, Lin T, Dhawan V, Kaplitt MG, Eidelberg DD (2009) Assessing the microlesion effect of subthalamic deep brain stimulation surgery with FDG PET: clinical article. J Neurosurg 110:1278–1282. https://doi.org/10.3171/2008.12.JNS08991
Alterman RL, Kall BA, Cohen H, Kelly PJ (1995) Stereotactic ventrolateral thalamotomy: is ventriculography necessary? Neurosurgery 37:717–722. https://doi.org/10.1227/00006123-199510000-00016
Mahajan A, Bader A, Wang LL, Rekhtman A, Espay AJ, Dwivedi AK, Sturchio A, Marsili L, Duker AP, Krishna V, Mandybur GT, Merola A (2020) Thalamic Deep Brain Stimulation for tremor: the critical role of intraoperative testing. Parkinsonism Relat Disord 73:45–49. https://doi.org/10.1016/j.parkreldis.2020.03.022
Goetz CG, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stebbins GT, Stern MB, Tilley BC, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, Lewitt PA, Nyenhuis D, Olanow W, Rascol O, Schrag A, Teresi JA, Van Hilten JJ, Lapelle N (2019) The MDS-sponsored revision of the unified Parkinson’s disease rating scale. In: MDS_UPDRS_Updated_August2019. www.movementdisorders.org. Accessed 26 Sep 2022
Fahn S, Tolosa E, Marín C (1988) Clinical rating scale for tremor. Parkinson’s disease and movement disorders 225–234
Haubenberger D, Abbruzzese G, Bain PG, Bajaj N, Benito-León J, Bhatia KP, Deuschl G, Forjaz MJ, Hallett M, Louis ED, Lyons KE, Mestre TA, Raethjen J, Stamelou M, Tan EK, Testa CM, Elble RJ (2016) Transducer-based evaluation of tremor. Mov Disord 31:1327–1336. https://doi.org/10.1002/mds.26671
Elble RJ, McNames J (2016) Using portable transducers to measure tremor severity. Tremor and other hyperkinetic movements 6:375. https://doi.org/10.7916/D8DR2VCC
Jackson L, Klassen BT, Hassan A, Bower JH, Matsumoto JY, Coon EA, Ali F (2021) Utility of tremor electrophysiology studies. Clin Park Relat Disord 5. https://doi.org/10.1016/j.prdoa.2021.100108
Journee HL, Postma AA, Staal MJ (2007) Intraoperative neurophysiological assessment of disabling symptoms in DBS surgery. Neurophysiol Clin 37:467–475. https://doi.org/10.1016/j.neucli.2007.10.006
van der Stouwe AMM, Elting JW, van der Hoeven JH, van Laar T, Leenders KL, Maurits NM, Tijssen MAJ (2016) How typical are ‘typical’ tremor characteristics? Sensitivity and specificity of five tremor phenomena. Parkinsonism Relat Disord 30:23–28. https://doi.org/10.1016/j.parkreldis.2016.06.008
Rissanen SM, Kankaanpää M, Tarvainen MP, Novak V, Novak P, Hu K, Manor B, Airaksinen O, Karjalainen PA (2011) Analysis of EMG and acceleration signals for quantifying the effects of deep brain stimulation in Parkinsons disease. IEEE Trans Biomed Eng 58:2545–2553. https://doi.org/10.1109/TBME.2011.2159380
A DFV, He T, Redoute J-M, Lee C, Yuce MR (2022) Flexible forearm triboelectric sensors for parkinson’s disease diagnosing and monitoring. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, pp 4909–4912
Elble RJ, Pullman SL, Matsumoto JY, Raethjen J, Deuschl G, Tintner R (2006) Tremor amplitude is logarithmically related to 4- and 5-point tremor rating scales. Brain 129:2660–2666. https://doi.org/10.1093/brain/awl190
Sievänen H, Kujala UM (2017) Accelerometry - simple, but challenging. Scand J Med Sci Sports 27:574–578. https://doi.org/10.1111/sms.12887
van Brummelen EMJ, Ziagkos D, de Boon WMI, Hart EP, Doll RJ, Huttunen T, Kolehmainen P, Groeneveld GJ (2020) Quantification of tremor using consumer product accelerometry is feasible in patients with essential tremor and Parkinson’s disease: a comparative study. J Clin Mov Disord 7. https://doi.org/10.1186/s40734-020-00086-7
Salarian A, Russmann H, Wider C, Burkhard PR, Vingerhoets FJG, Aminian K (2007) Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans Biomed Eng 54:313–322. https://doi.org/10.1109/TBME.2006.886670
Aminian K, Najafi B (2004) Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications. Comput Animat Virtual Worlds 15:79–94. https://doi.org/10.1002/cav.2
Passaro VMN, Cuccovillo A, Vaiani L, de Carlo M, Campanella CE (2017) Gyroscope technology and applications: a review in the industrial perspective. Sensors, Switzerland, 17:2284. https://doi.org/10.3390/s17102284
Elble RJ, Hellriegel H, Raethjen J, Deuschl G (2017) Assessment of head tremor with accelerometers versus gyroscopic transducers. Mov Disord Clin Pract 4:205–211. https://doi.org/10.1002/mdc3.12379
Rigas G, Tzallas AT, Tsipouras MG, Bougia P, Tripoliti EE, Baga D, Fotiadis DI, Tsouli SG, Konitsiotis S (2012) Assessment of tremor activity in the Parkinson’s disease using a set of wearable sensors. IEEE Trans Inf Technol Biomed 16:478–487. https://doi.org/10.1109/TITB.2011.2182616
Tsipouras MG, Tzallas AT, Rigas G, Tsouli S, Fotiadis DI, Konitsiotis S (2012) An automated methodology for levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals. Artif Intell Med 55:127–135. https://doi.org/10.1016/j.artmed.2012.03.003
Milner-Brown HS, Fisher MA, Weiner WJ (1979) Electrical properties of motor units in Parkinsonism and a possible relationship with bradykinesia. J Neurol Neurosurg Psychiatry 42:35–41. https://doi.org/10.1136/jnnp.42.1.35
Salarian A, Russmann H, Vingerhoets FJG, Burkhard PR, Aminian K (2007) Ambulatory monitoring of physical activities in patients with Parkinson’s disease. IEEE Trans Biomed Eng 54:2296–2299. https://doi.org/10.1109/TBME.2007.896591
Bank PJM, Marinus J, Meskers CGM, de Groot JH, van Hilten JJ (2017) Optical hand tracking: a novel technique for the assessment of bradykinesia in Parkinson’s disease. Mov Disord Clin Pract 4:875–883. https://doi.org/10.1002/mdc3.12536
Kim MJ, Naydanova E, Hwang BY, Mills KA, Anderson WS, Salimpour Y (2020) Quantification of Parkinson’s disease motor symptoms: a wireless motion sensing approach. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, pp 3658–3661
Weichert F, Bachmann D, Rudak B, Fisseler D (2013) Analysis of the accuracy and robustness of the Leap Motion Controller. Sensors (Switzerland) 13:6380–6393. https://doi.org/10.3390/s130506380
Yokoe M, Okuno R, Hamasaki T, Kurachi Y, Akazawa K, Sakoda S (2009) Opening velocity, a novel parameter, for finger tapping test in patients with Parkinson’s disease. Parkinsonism Relat Disord 15:440–444. https://doi.org/10.1016/j.parkreldis.2008.11.003
Teshuva I, Hillel I, Gazit E, Giladi N, Mirelman A, Hausdorff JM (2019) Using wearables to assess bradykinesia and rigidity in patients with Parkinson’s disease: a focused, narrative review of the literature. J Neural Transm 126:699–710. https://doi.org/10.1007/s00702-019-02017-9
Levin J, Krafzcyk S, Valkovič P, Eggert T, Claassen J, Bötzel K (2009) Objective measurement of muscle rigidity in Parkinsonian patients treated with subthalamic stimulation. Mov Disord 24:57–63. https://doi.org/10.1002/mds.22291
Powell D, Joseph Threlkeld A, Fang X, Muthumani A, Xia R (2012) Amplitude- and velocity-dependency of rigidity measured at the wrist in Parkinson’s disease. Clin Neurophysiol 123:764–773. https://doi.org/10.1016/j.clinph.2011.08.004
Assis S, Costa P, Rosas MJ, Vaz R, Silva Cunha JP (2016) An adaptive model approach for quantitative wrist rigidity evaluation during deep brain stimulation surgery. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 5809–5812
Costa P, Rosas MJ, Vaz R, Cunha JP (2015) Wrist rigidity assessment during deep brain stimulation surgery. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 3423–3426
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akl EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garritty C, Lewin S, Godfrey CM, MacDonald MT, Langlois EV, Soares-Weiser K, Moriarty J, Clifford T, Tunçalp Ö, Straus SE (2018) PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med 169:467–473. https://doi.org/10.7326/M18-0850
Landy HJ, Weiner WJ, Calancie B, Harris W, Shulman LM, Singer C, Abrams L, Bowen B (2000) Electromyography during stereotactic pallidotomy for Parkinson’s disease. Stereotact Funct Neurosurg 74:21–29
Koop MM, Andrzejewski A, Hill BC, Heit G, Bronte-Stewart HM (2006) Improvement in a quantitative measure of bradykinesia after microelectrode recording in patients with Parkinson’s disease during deep brain stimulation surgery. Mov Disord 21:673–678. https://doi.org/10.1002/mds.20796
Papapetropoulos S, Jagid JR, Sengun C, Singer C, Gallo BV (2008) Objective monitoring of tremor and bradykinesia during DBS surgery for Parkinson disease. Neurology 70:1244–1249
Papapetropoulos S, Gallo BV, Guevara A, Singer C, Mitsi G, Lyssikatos C, Jagid JR (2009) Objective tremor registration during DBS surgery for essential tremor. Clin Neurol Neurosurg 111:376–379. https://doi.org/10.1016/j.clineuro.2008.10.017
Waldau B, Clayton DA, Gasperson LB, Turner DA (2011) Analysis of the time course of the effect of subthalamic nucleus stimulation upon hand function in Parkinson’s patients. Stereotact Funct Neurosurg 89:48–55. https://doi.org/10.1159/000323340
Florin E, Himmel M, Reck C, Maarouf M, Schnitzler A, Sturm V, Fink GR, Timmermann L (2012) Subtype-specific statistical causalities in parkinsonian tremor. Neuroscience 210:353–362. https://doi.org/10.1016/j.neuroscience.2012.02.045
Kwon Y, Park SH, Kim JW, Ho Y, Jeon HM, Bang MJ, Koh SB, Kim JH, Eom GM (2014) Quantitative evaluation of parkinsonian rigidity during intra-operative deep brain stimulation. Biomed Mater Eng 24:2273–2281. https://doi.org/10.3233/BME-141040
Hemm S, Pison D, Alonso F, Shah A, Coste J, Lemaire JJ, Wårdell K, Merello M, Shaikh AG, Min HK (2016) Patient-specific electric field simulations and acceleration measurements for objective analysis of intraoperative stimulation tests in the thalamus. Front Hum Neurosci 10. https://doi.org/10.3389/fnhum.2016.00577
Florin E, Pfeifer J, Visser-Vandewalle V, Schnitzler A, Timmermann L (2016) Parkinson subtype-specific Granger-causal coupling and coherence frequency in the subthalamic area. Neuroscience 332:170–180. https://doi.org/10.1016/j.neuroscience.2016.06.052
Shah A, Coste J, Lemaire JJ, Taub E, Schüpbach WMM, Pollo C, Schkommodau E, Guzman R, Hemm-Ode S (2017) Intraoperative acceleration measurements to quantify improvement in tremor during deep brain stimulation surgery. Med Biol Eng Comput 55:845–858. https://doi.org/10.1007/s11517-016-1559-9
Shah A, Coste J, Lemaire JJ, Schkommodau E, Taub E, Guzman R, Derost P, Hemm S (2017) A novel assistive method for rigidity evaluation during deep brain stimulation surgery using acceleration sensors. J Neurosurg 127:602–612. https://doi.org/10.3171/2016.8.JNS152770
Milosevic L, Kalia SK, Hodaie M, Lozano AM, Popovic MR, Hutchison WD (2018) Physiological mechanisms of thalamic ventral intermediate nucleus stimulation for tremor suppression. Brain 141:2142–2155. https://doi.org/10.1093/brain/awy139
Schaeffer EL, Liu DY, Guerin J, Ahn M, Lee S, Asaad WF (2018) A low-cost solution for quantification of movement during DBS surgery. J Neurosci Methods 303:136–145. https://doi.org/10.1016/j.jneumeth.2018.03.013
Shah A, Vogel D, Alonso F, Lemaire JJ, Pison D, Coste J, Wårdell K, Schkommodau E, Hemm S (2020) Stimulation maps: visualization of results of quantitative intraoperative testing for deep brain stimulation surgery. Med Biol Eng Comput 58:771–784. https://doi.org/10.1007/s11517-020-02130-y
Wang KL, Burns M, Xu D, Hu W, Fan SY, Han CL, Wang Q, Michitomo S, Xia XT, Zhang JG, Wang F, Meng FG (2020) Electromyography biomarkers for quantifying the intraoperative efficacy of deep brain stimulation in Parkinson’s patients with resting tremor. Front Neurol 11. https://doi.org/10.3389/fneur.2020.00142
Lopes EM, Vilas-Boas MDC, Dias D, Rosas MJ, Vaz R, Cunha JPS (2020) IHandU: A novel quantitative wrist rigidity evaluation device for deep brain stimulation surgery. Sensors (Switzerland) 20. https://doi.org/10.3390/s20020331
Wu J, Yu N, Yu Y, Li H, Wu F, Yang Y, Lin J, Han J, Liang S (2021) Intraoperative quantitative measurements for bradykinesia evaluation during deep brain stimulation surgery using leap motion controller: A Pilot Study. Parkinsons Dis 2021. https://doi.org/10.1155/2021/6639762
Kremer NI, Oterdoom DLM, Absalom AR, ten Cate DW, van Dijk JMC, van Egmond ME, Drost G (2021) Are we on the right track in DBS surgery for dystonic head tremor? Polymyography is a promising answer. Parkinsonism Relat Disord 93:74–76. https://doi.org/10.1016/j.parkreldis.2021.11.013
Smid A, Elting JWJ, van Dijk JMC, Otten B, Oterdoom DLM, Tamasi K, Heida T, van Laar T, Drost G (2022) Intraoperative quantification of MDS-UPDRS tremor measurements using 3D accelerometry: a pilot study. J Clin Med 11:2275. https://doi.org/10.3390/jcm11092275
Yu N, Yu Y, Lin J, Yang Y, Wu J, Liang S, Wu J, Han J (2022) A non-contact system for intraoperative quantitative assessment of bradykinesia in deep brain stimulation surgery. Comput Methods Programs Biomed 225. https://doi.org/10.1016/j.cmpb.2022.107005
Baek H, Chen J, Lockwood D, Obusez E, Poturalski M, Nagel SJ, Jones SE (2023) Feasibility of magnetic resonance–compatible accelerometers to monitor tremor fluctuations during magnetic resonance–guided focused ultrasound thalamotomy: technical note. operative neurosurgery. https://doi.org/10.1227/ons.0000000000000638
Smid A, Oterdoom DLM, Pauwels RWJ, Tamasi K, Elting JWJ, Absalom AR, van Laar T, van Dijk JMC, Drost G (2023) The relevance of intraoperative clinical and accelerometric measurements for thalamotomy outcome. J Clin Med 12:5887. https://doi.org/10.3390/jcm12185887
Glowinsky S, Bergman H, Zarchi O, Fireman S, Reiner J, Tamir I (2023) Electrophysiology-aided DBS targeting the ventral intermediate nucleus in an essential tremor patient with MRI-incompatible lead: a case report. Physiol Rep 11:e15730. https://doi.org/10.14814/phy2.15730
Kostikis N, Hristu-Varsakelis D, Arnaoutoglou M, Kotsavasiloglou C (2015) A smartphone-based tool for assessing parkinsonian hand tremor. IEEE J Biomed Health Inform 19:1835–1842. https://doi.org/10.1109/JBHI.2015.2471093
Kim JS (2001) Delayed onset mixed involuntary movements after thalamic stroke: clinical, radiological and pathophysiological findings. Brain 124:299–309. https://doi.org/10.1093/brain/124.2.299
Lehéricy S, Grand; S, Pollak; P, Poupon; F, Le Bas J-F, Limousin; P, Jedynak; P, Marsault; C, Agid; Y, Vidailhet M, (2001) Clinical characteristics and topography of lesions in movement disorders due to thalamic lesions. Neurology 57:1055–1066. https://doi.org/10.1212/wnl.57.6.1055
Raina GB, Cersosimo MG, Folgar SS, Giugni JC, Calandra C, Paviolo JP, Tkachuk VA, Ramirez CZ, Tschopp AL, Calvo DS, Pellene LA, Uribe Roca MC, Velez M, Giannaula RJ, Fernandez Pardal MM, Micheli FE (2016) Holmes tremor clinical description, lesion localization, and treatment in a series of 29 cases. American Academy of Neurology 86:931–938
Starr PA (2013) Deep brain stimulation for other tremors, myoclonus, and chorea. In: Handbook of clinical neurology. pp 209–215
Garcia-Agundez A, Eickhoff C (2021) Towards objective quantification of hand tremors and bradykinesia using contactless sensors: a systematic review. Front Aging Neurosci 13. https://doi.org/10.3389/fnagi.2021.716102
Khodakarami H, Farzanehfar P, Horne M (2019) The use of data from the Parkinson’s kinetigraph to identify potential candidates for device assisted therapies. Sensors (Switzerland) 19. https://doi.org/10.3390/s19102241
Legros A, Diakonova N, Cif L, Hemm S, Vayssière N, Coubes P, Beuter A (2004) Accelerometric measurement of involuntary movements during pallidal deep brain stimulation of patients with generalized dystonia. Brain Res Bull 64:363–369. https://doi.org/10.1016/j.brainresbull.2004.09.002
Lieber B, Taylor BES, Appelboom G, Mckhann G, Connolly ES (2015) Motion sensors to assess and monitor medical and surgical management of Parkinson disease. World Neurosurg 84:561–566. https://doi.org/10.1016/j.wneu.2015.03.024
Obwegeser AA, Uitti RJ, Witte RJ, Lucas JA, Turk MF, Wharen RE (2001) Quantitative and qualitative outcome measures after thalamic deep brain stimulation to treat disabling tremors. Neurosurgery 48:274–281. https://doi.org/10.1097/00006123-200102000-00004
Pulliam CL, Heldman DA, Orcutt TH, Mera TO, Giuffrida JP, Vitek JL (2015) Motion sensor strategies for automated optimization of deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord 21:378–382. https://doi.org/10.1016/j.parkreldis.2015.01.018
Rüegge D, Mahendran S, Stieglitz LH, Oertel MF, Gassert R, Lambercy O, Baumann CR, Imbach LL (2020) Tremor analysis with wearable sensors correlates with outcome after thalamic deep brain stimulation. Clin Park Relat Disord 3. https://doi.org/10.1016/j.prdoa.2020.100066
Ferleger BI, Houston B, Thompson MC, Cooper SS, Sonnet KS, Ko AL, Herron JA, Chizeck HJ (2020) Fully implanted adaptive deep brain stimulation in freely moving essential tremor patients. J Neural Eng 17:056026. https://doi.org/10.1088/1741-2552/abb416
Piña-Fuentes D, van Dijk JMC, van Zijl JC, Moes HR, van Laar T, Oterdoom DLM, Little S, Brown P, Beudel M (2020) Acute effects of adaptive deep brain stimulation in Parkinson’s disease. Brain Stimul 13:1507–1516. https://doi.org/10.1016/j.brs.2020.07.016
Carroll C, Kobylecki C, Silverdale M, Thomas C (2019) Impact of quantitative assessment of Parkinson’s disease-associated symptoms using wearable technology on treatment decisions. J Parkinsons Dis 9:601. https://doi.org/10.3233/jpd-191623
Santiago A, Langston JW, Gandhy R, Dhall R, Brillman S, Rees L, Barlow C (2019) Qualitative evaluation of the personal kinetigraph TM movement recording system in a Parkinson’s clinic. J Parkinsons Dis 9:207–219. https://doi.org/10.3233/JPD-181373