Object recognition ability predicts category learning with medical images
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abujudeh, H. H., Boland, G. W., Kaewlai, R., Rabiner, P., Halpern, E. F., Gazelle, G. S., & Thrall, J. H. (2010). Abdominal and pelvic computed tomography (CT) interpretation: Discrepancy rates among experienced radiologists. European Radiology, 20(8), 1952–1957. https://doi.org/10.1007/s00330-010-1763-1
Ashby, F. G., Maddox, W. T., & Bohil, C. J. (2002). Observational versus feedback training in rule-based and information-integration category learning. Memory & Cognition, 30(5), 666–677. https://doi.org/10.3758/BF03196423
Ashby, F. G., Queller, S., & Berretty, P. M. (1999). On the dominance of unidimensional rules in unsupervised categorization. Perception & Psychophysics, 61(6), 1178–1199. https://doi.org/10.3758/BF03207622
Brady, A. P. (2017). Error and discrepancy in radiology: Inevitable or avoidable? Insights into Imaging, 8(1), 171–182. https://doi.org/10.1007/s13244-016-0534-1
Chang, T.-Y., & Gauthier, I. (2021). Domain-specific and domain-general contributions to reading musical notation. Attention, Perception, & Psychophysics, 83(7), 2983–2994. https://doi.org/10.3758/s13414-021-02349-3
Chang, T.-Y., & Gauthier, I. (2022). Domain-general ability underlies complex object ensemble processing. Journal of Experimental Psychology: General, 151(4), 966–972. https://doi.org/10.1037/xge0001110
Chow, J. K., Palmeri, T. J., & Gauthier, I. (2022). Haptic object recognition based on shape relates to visual object recognition ability. Psychological Research Psychologische Forschung, 86(4), 1262–1273. https://doi.org/10.1007/s00426-021-01560-z
Donald, J. J., & Barnard, S. A. (2012). Common patterns in 558 diagnostic radiology errors. Journal of Medical Imaging and Radiation Oncology, 56(2), 173–178. https://doi.org/10.1111/j.1754-9485.2012.02348.x
Ferguson, A., Assadsangabi, R., Chang, J., Raslan, O., Bobinski, M., Bewley, A., Dublin, A., Latchaw, R., & Ivanovic, V. (2021). Analysis of misses in imaging of head and neck pathology by attending neuroradiologists at a single tertiary academic medical centre. Clinical Radiology, 76(10), 786.e9-786.e13. https://doi.org/10.1016/j.crad.2021.06.011
Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and nonsense. Advances in Methods and Practices in Psychological Science, 2(2), 156–168. https://doi.org/10.1177/2515245919847202
Gauthier, I. (2018). Domain-specific and domain-general individual differences in visual object recognition. Current Directions in Psychological Science, 27(2), 97–102. https://doi.org/10.1177/0963721417737151
Gauthier, I., Cha, O., & Chang, T.-Y. (2022). Mini review: Individual differences and domain-general mechanisms in object recognition. Frontiers in Cognition. https://doi.org/10.3389/fcogn.2022.1040994
Gauthier, I., & Fiestan, G. (2023). Food neophobia predicts visual ability in the recognition of prepared food, beyond domain-general factors. Food Quality and Preference, 103, 104702. https://doi.org/10.1016/j.foodqual.2022.104702
Gauthier, I., & Tarr, M. J. (1997). Becoming a “Greeble” expert: Exploring mechanisms for face recognition. Vision Research, 37(12), 1673–1682. https://doi.org/10.1016/S0042-6989(96)00286-6
Gergenti, L., & Olympia, R. P. (2019). Etiology and disposition associated with radiology discrepancies on emergency department patients. The American Journal of Emergency Medicine, 37(11), 2015–2019. https://doi.org/10.1016/j.ajem.2019.02.027
Gibson, B. R., Rogers, T. T., & Zhu, X. (2013). Human semi-supervised learning. Topics in Cognitive Science, 5(1), 132–172. https://doi.org/10.1111/tops.12010
Graber, M., Gordon, R., & Franklin, N. (2002). Reducing diagnostic errors in medicine: What’s the goal? Academic Medicine, 77(10), 981–992.
Growns, B., Dunn, J. D., Mattijssen, E. J. A. T., Quigley-McBride, A., & Towler, A. (2022). Match me if you can: Evidence for a domain-general visual comparison ability. Psychonomic Bulletin & Review, 29(3), 866–881. https://doi.org/10.3758/s13423-021-02044-2
Hasan, E., Eichbaum, Q., Seegmiller, A., Stratton, C., & Trueblood, J. S. (2021). Harnessing the Wisdom of the Confident Crowd in Medical Image Decision-making [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/wkqgs
Itani, M., Assaker, R., Moshiri, M., Dubinsky, T. J., & Dighe, M. K. (2019). Inter-observer variability in the American college of radiology thyroid imaging reporting and data system: In-depth analysis and areas for improvement. Ultrasound in Medicine & Biology, 45(2), 461–470. https://doi.org/10.1016/j.ultrasmedbio.2018.09.026
Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford University Press.
Johansen, M., & Palmeri, T. J. (2002). Are there representational shifts during category learning? Cognitive Psychology, 45(4), 482–553. https://doi.org/10.1016/S0010-0285(02)00505-4
Kim, Y. W., & Mansfield, L. T. (2014). Fool me twice: Delayed diagnoses in radiology with emphasis on perpetuated errors. American Journal of Roentgenology, 202(3), 465–470. https://doi.org/10.2214/AJR.13.11493
Kolb, T. M., Lichy, J., & Newhouse, J. H. (2002). Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations. Radiology, 225(1), 165–175. https://doi.org/10.1148/radiol.2251011667
Lamoureux, C., Hanna, T. N., Sprecher, D., Weber, S., & Callaway, E. (2021). Radiologist errors by modality, anatomic region, and pathology for 1.6 million exams: What we have learned. Emergency Radiology, 28(6), 1135–1141. https://doi.org/10.1007/s10140-021-01959-6
LaTourrette, A., & Waxman, S. R. (2019). A little labeling goes a long way: Semi-supervised learning in infancy. Developmental Science, 22(1), e12736. https://doi.org/10.1111/desc.12736
Le Pelley, M. E., Newell, B. R., & Nosofsky, R. M. (2019). Deferred feedback does not dissociate implicit and explicit category-learning systems: Commentary on Smith et al. (2014). Psychological Science, 30(9), 1403–1409. https://doi.org/10.1177/0956797619841264
Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian Cognitive Modeling: A Practical Course. Cambridge University Press.
Lee, C. S., Nagy, P. G., Weaver, S. J., & Newman-Toker, D. E. (2013). Cognitive and system factors contributing to diagnostic errors in radiology. American Journal of Roentgenology, 201(3), 611–617. https://doi.org/10.2214/AJR.12.10375
Little, J. L., & McDaniel, M. A. (2015). Individual differences in category learning: Memorization versus rule abstraction. Memory & Cognition, 43(2), 283–297. https://doi.org/10.3758/s13421-014-0475-1
Lockwood, P. (2017). Observer performance in computed tomography head reporting. Journal of Medical Imaging and Radiation Sciences, 48(1), 22–29. https://doi.org/10.1016/j.jmir.2016.08.001
Morey, R., D., & Rouder, J., N. (2021). BayesFactor: Computation of Bayes Factors for Common Designs. R package version 0.9.12–4.3. https://CRAN.R-project.org/package=BayesFactor
Mulder, J., Gu, X., Olsson-Collentine, A., Tomarken, A., Böing-Messing, F., Hoijtink, H., Meijerink, M., Williams, D. R., Menke, J., Fox, J.-P., Rosseel, Y., Wagenmakers, E.-J., & van Lissa, C. (2019). BFpack: Flexible bayes factor testing of scientific theories in R. ArXiv:1911.07728 [Stat]. http://arxiv.org/abs/1911.07728
Ree, M. J., & Earles, J. A. (1992). Intelligence is the best predictor of job performance. Current Directions in Psychological Science, 1(3), 86–89.
Richler, J. J., & Palmeri, T. J. (2014). Visual category learning: Visual category learning. Wiley Interdisciplinary Reviews: Cognitive Science, 5(1), 75–94. https://doi.org/10.1002/wcs.1268
Richler, J. J., Tomarken, A. J., Sunday, M. A., Vickery, T. J., Ryan, K. F., Floyd, R. J., Sheinberg, D., Wong, A.C.-N., & Gauthier, I. (2019). Individual differences in object recognition. Psychological Review, 126(2), 226–251. https://doi.org/10.1037/rev0000129
Richler, J. J., Wilmer, J. B., & Gauthier, I. (2017). General object recognition is specific: Evidence from novel and familiar objects. Cognition, 166, 42–55. https://doi.org/10.1016/j.cognition.2017.05.019
Rudolph, J., Fink, N., Dinkel, J., Koliogiannis, V., Schwarze, V., Goller, S., Erber, B., Geyer, T., Hoppe, B. F., Fischer, M., Ben Khaled, N., Jörgens, M., Ricke, J., Rueckel, J., & Sabel, B. O. (2021). Interpretation of thoracic radiography shows large discrepancies depending on the qualification of the physician—quantitative evaluation of interobserver agreement in a representative emergency department scenario. Diagnostics, 11(10), 1868. https://doi.org/10.3390/diagnostics11101868
Rushton, J. P., Brainerd, C. J., & Pressley, M. (1983). Behavioral development and construct validity: The principle of aggregation. Psychological Bulletin, 94(1), 18–38. https://doi.org/10.1037/0033-2909.94.1.18
Smithson, C. J. R., Chow, J. K., Chang, T.-Y., & Gauthier, I. (2022). Measuring Object Recognition Ability: Reliability, Validity, and the Aggregate z-score Approach. Manuscript in Preparation.
Stewart, N., Brown, G. D. A., & Chater, N. (2002). Sequence effects in categorization of simple perceptual stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(1), 3–11. https://doi.org/10.1037//0278-7393.28.1.3
Sunday, M. A., Donnelly, E., & Gauthier, I. (2018). Both fluid intelligence and visual object recognition ability relate to nodule detection in chest radiographs. Applied Cognitive Psychology, 32(6), 755–762. https://doi.org/10.1002/acp.3460
Sunday, M. A., Tomarken, A., Cho, S.-J., & Gauthier, I. (2022). Novel and familiar object recognition rely on the same ability. Journal of Experimental Psychology: General. 151(3), 676-694. https://doi.org/10.1037/xge0001100
Trueblood, J. S., Holmes, W. R., Seegmiller, A. C., Douds, J., Compton, M., Szentirmai, E., Woodruff, M., Huang, W., Stratton, C., & Eichbaum, Q. (2018). The impact of speed and bias on the cognitive processes of experts and novices in medical image decision-making. Cognitive Research: Principles and Implications. https://doi.org/10.1186/s41235-018-0119-2
Wahlheim, C. N., McDaniel, M. A., & Little, J. L. (2016). Category learning strategies in younger and older adults: Rule abstraction and memorization. Psychology and Aging, 31(4), 346–357. https://doi.org/10.1037/pag0000083
Waite, S., Scott, J. M., Legasto, A., Kolla, S., Gale, B., & Krupinski, E. A. (2017). Systemic error in radiology. American Journal of Roentgenology, 209(3), 629–639. https://doi.org/10.2214/AJR.16.17719
Wang, M. W., & Stanley, J. C. (1970). Differential weighting: a review of methods and empirical studies. Review of Educational Research, 40(5), 663–705. https://doi.org/10.2307/1169462