Object recognition ability predicts category learning with medical images

Conor J. R. Smithson1, Quentin Eichbaum2, Isabel Gauthier1
1Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN, 37240-7817, USA
2Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, USA

Tóm tắt

AbstractWe investigated the relationship between category learning and domain-general object recognition ability (o). We assessed this relationship in a radiological context, using a category learning test in which participants judged whether white blood cells were cancerous. In study 1, Bayesian evidence negated a relationship between o and category learning. This lack of correlation occurred despite high reliability in all measurements. However, participants only received feedback on the first 10 of 60 trials. In study 2, we assigned participants to one of two conditions: feedback on only the first 10 trials, or on all 60 trials of the category learning test. We found strong Bayesian evidence for a correlation between o and categorisation accuracy in the full-feedback condition, but not when feedback was limited to early trials. Moderate Bayesian evidence supported a difference between these correlations. Without feedback, participants may stick to simple rules they formulate at the start of category learning, when trials are easier. Feedback may encourage participants to abandon less effective rules and switch to exemplar learning. This work provides the first evidence relating o to a specific learning mechanism, suggesting this ability is more dependent upon exemplar learning mechanisms than rule abstraction. Object-recognition ability could complement other sources of individual differences when predicting accuracy of medical image interpretation.

Từ khóa


Tài liệu tham khảo

Abujudeh, H. H., Boland, G. W., Kaewlai, R., Rabiner, P., Halpern, E. F., Gazelle, G. S., & Thrall, J. H. (2010). Abdominal and pelvic computed tomography (CT) interpretation: Discrepancy rates among experienced radiologists. European Radiology, 20(8), 1952–1957. https://doi.org/10.1007/s00330-010-1763-1

Ashby, F. G., Maddox, W. T., & Bohil, C. J. (2002). Observational versus feedback training in rule-based and information-integration category learning. Memory & Cognition, 30(5), 666–677. https://doi.org/10.3758/BF03196423

Ashby, F. G., Queller, S., & Berretty, P. M. (1999). On the dominance of unidimensional rules in unsupervised categorization. Perception & Psychophysics, 61(6), 1178–1199. https://doi.org/10.3758/BF03207622

Brady, A. P. (2017). Error and discrepancy in radiology: Inevitable or avoidable? Insights into Imaging, 8(1), 171–182. https://doi.org/10.1007/s13244-016-0534-1

Chang, T.-Y., & Gauthier, I. (2021). Domain-specific and domain-general contributions to reading musical notation. Attention, Perception, & Psychophysics, 83(7), 2983–2994. https://doi.org/10.3758/s13414-021-02349-3

Chang, T.-Y., & Gauthier, I. (2022). Domain-general ability underlies complex object ensemble processing. Journal of Experimental Psychology: General, 151(4), 966–972. https://doi.org/10.1037/xge0001110

Chow, J. K., Palmeri, T. J., & Gauthier, I. (2022). Haptic object recognition based on shape relates to visual object recognition ability. Psychological Research Psychologische Forschung, 86(4), 1262–1273. https://doi.org/10.1007/s00426-021-01560-z

Donald, J. J., & Barnard, S. A. (2012). Common patterns in 558 diagnostic radiology errors. Journal of Medical Imaging and Radiation Oncology, 56(2), 173–178. https://doi.org/10.1111/j.1754-9485.2012.02348.x

Ferguson, A., Assadsangabi, R., Chang, J., Raslan, O., Bobinski, M., Bewley, A., Dublin, A., Latchaw, R., & Ivanovic, V. (2021). Analysis of misses in imaging of head and neck pathology by attending neuroradiologists at a single tertiary academic medical centre. Clinical Radiology, 76(10), 786.e9-786.e13. https://doi.org/10.1016/j.crad.2021.06.011

Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and nonsense. Advances in Methods and Practices in Psychological Science, 2(2), 156–168. https://doi.org/10.1177/2515245919847202

Gauthier, I. (2018). Domain-specific and domain-general individual differences in visual object recognition. Current Directions in Psychological Science, 27(2), 97–102. https://doi.org/10.1177/0963721417737151

Gauthier, I., Cha, O., & Chang, T.-Y. (2022). Mini review: Individual differences and domain-general mechanisms in object recognition. Frontiers in Cognition. https://doi.org/10.3389/fcogn.2022.1040994

Gauthier, I., & Fiestan, G. (2023). Food neophobia predicts visual ability in the recognition of prepared food, beyond domain-general factors. Food Quality and Preference, 103, 104702. https://doi.org/10.1016/j.foodqual.2022.104702

Gauthier, I., & Tarr, M. J. (1997). Becoming a “Greeble” expert: Exploring mechanisms for face recognition. Vision Research, 37(12), 1673–1682. https://doi.org/10.1016/S0042-6989(96)00286-6

Gergenti, L., & Olympia, R. P. (2019). Etiology and disposition associated with radiology discrepancies on emergency department patients. The American Journal of Emergency Medicine, 37(11), 2015–2019. https://doi.org/10.1016/j.ajem.2019.02.027

Gibson, B. R., Rogers, T. T., & Zhu, X. (2013). Human semi-supervised learning. Topics in Cognitive Science, 5(1), 132–172. https://doi.org/10.1111/tops.12010

Graber, M., Gordon, R., & Franklin, N. (2002). Reducing diagnostic errors in medicine: What’s the goal? Academic Medicine, 77(10), 981–992.

Growns, B., Dunn, J. D., Mattijssen, E. J. A. T., Quigley-McBride, A., & Towler, A. (2022). Match me if you can: Evidence for a domain-general visual comparison ability. Psychonomic Bulletin & Review, 29(3), 866–881. https://doi.org/10.3758/s13423-021-02044-2

Hasan, E., Eichbaum, Q., Seegmiller, A., Stratton, C., & Trueblood, J. S. (2021). Harnessing the Wisdom of the Confident Crowd in Medical Image Decision-making [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/wkqgs

Itani, M., Assaker, R., Moshiri, M., Dubinsky, T. J., & Dighe, M. K. (2019). Inter-observer variability in the American college of radiology thyroid imaging reporting and data system: In-depth analysis and areas for improvement. Ultrasound in Medicine & Biology, 45(2), 461–470. https://doi.org/10.1016/j.ultrasmedbio.2018.09.026

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford University Press.

Johansen, M., & Palmeri, T. J. (2002). Are there representational shifts during category learning? Cognitive Psychology, 45(4), 482–553. https://doi.org/10.1016/S0010-0285(02)00505-4

Kim, Y. W., & Mansfield, L. T. (2014). Fool me twice: Delayed diagnoses in radiology with emphasis on perpetuated errors. American Journal of Roentgenology, 202(3), 465–470. https://doi.org/10.2214/AJR.13.11493

Kolb, T. M., Lichy, J., & Newhouse, J. H. (2002). Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations. Radiology, 225(1), 165–175. https://doi.org/10.1148/radiol.2251011667

Lamoureux, C., Hanna, T. N., Sprecher, D., Weber, S., & Callaway, E. (2021). Radiologist errors by modality, anatomic region, and pathology for 1.6 million exams: What we have learned. Emergency Radiology, 28(6), 1135–1141. https://doi.org/10.1007/s10140-021-01959-6

LaTourrette, A., & Waxman, S. R. (2019). A little labeling goes a long way: Semi-supervised learning in infancy. Developmental Science, 22(1), e12736. https://doi.org/10.1111/desc.12736

Le Pelley, M. E., Newell, B. R., & Nosofsky, R. M. (2019). Deferred feedback does not dissociate implicit and explicit category-learning systems: Commentary on Smith et al. (2014). Psychological Science, 30(9), 1403–1409. https://doi.org/10.1177/0956797619841264

Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian Cognitive Modeling: A Practical Course. Cambridge University Press.

Lee, C. S., Nagy, P. G., Weaver, S. J., & Newman-Toker, D. E. (2013). Cognitive and system factors contributing to diagnostic errors in radiology. American Journal of Roentgenology, 201(3), 611–617. https://doi.org/10.2214/AJR.12.10375

Little, J. L., & McDaniel, M. A. (2015). Individual differences in category learning: Memorization versus rule abstraction. Memory & Cognition, 43(2), 283–297. https://doi.org/10.3758/s13421-014-0475-1

Lockwood, P. (2017). Observer performance in computed tomography head reporting. Journal of Medical Imaging and Radiation Sciences, 48(1), 22–29. https://doi.org/10.1016/j.jmir.2016.08.001

Morey, R., D., & Rouder, J., N. (2021). BayesFactor: Computation of Bayes Factors for Common Designs. R package version 0.9.12–4.3. https://CRAN.R-project.org/package=BayesFactor

Mulder, J., Gu, X., Olsson-Collentine, A., Tomarken, A., Böing-Messing, F., Hoijtink, H., Meijerink, M., Williams, D. R., Menke, J., Fox, J.-P., Rosseel, Y., Wagenmakers, E.-J., & van Lissa, C. (2019). BFpack: Flexible bayes factor testing of scientific theories in R. ArXiv:1911.07728 [Stat]. http://arxiv.org/abs/1911.07728

Ree, M. J., & Earles, J. A. (1992). Intelligence is the best predictor of job performance. Current Directions in Psychological Science, 1(3), 86–89.

Richler, J. J., & Palmeri, T. J. (2014). Visual category learning: Visual category learning. Wiley Interdisciplinary Reviews: Cognitive Science, 5(1), 75–94. https://doi.org/10.1002/wcs.1268

Richler, J. J., Tomarken, A. J., Sunday, M. A., Vickery, T. J., Ryan, K. F., Floyd, R. J., Sheinberg, D., Wong, A.C.-N., & Gauthier, I. (2019). Individual differences in object recognition. Psychological Review, 126(2), 226–251. https://doi.org/10.1037/rev0000129

Richler, J. J., Wilmer, J. B., & Gauthier, I. (2017). General object recognition is specific: Evidence from novel and familiar objects. Cognition, 166, 42–55. https://doi.org/10.1016/j.cognition.2017.05.019

Rudolph, J., Fink, N., Dinkel, J., Koliogiannis, V., Schwarze, V., Goller, S., Erber, B., Geyer, T., Hoppe, B. F., Fischer, M., Ben Khaled, N., Jörgens, M., Ricke, J., Rueckel, J., & Sabel, B. O. (2021). Interpretation of thoracic radiography shows large discrepancies depending on the qualification of the physician—quantitative evaluation of interobserver agreement in a representative emergency department scenario. Diagnostics, 11(10), 1868. https://doi.org/10.3390/diagnostics11101868

Rushton, J. P., Brainerd, C. J., & Pressley, M. (1983). Behavioral development and construct validity: The principle of aggregation. Psychological Bulletin, 94(1), 18–38. https://doi.org/10.1037/0033-2909.94.1.18

Smithson, C. J. R., Chow, J. K., Chang, T.-Y., & Gauthier, I. (2022). Measuring Object Recognition Ability: Reliability, Validity, and the Aggregate z-score Approach. Manuscript in Preparation.

Stewart, N., Brown, G. D. A., & Chater, N. (2002). Sequence effects in categorization of simple perceptual stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(1), 3–11. https://doi.org/10.1037//0278-7393.28.1.3

Sunday, M. A., Donnelly, E., & Gauthier, I. (2018). Both fluid intelligence and visual object recognition ability relate to nodule detection in chest radiographs. Applied Cognitive Psychology, 32(6), 755–762. https://doi.org/10.1002/acp.3460

Sunday, M. A., Tomarken, A., Cho, S.-J., & Gauthier, I. (2022). Novel and familiar object recognition rely on the same ability. Journal of Experimental Psychology: General. 151(3), 676-694. https://doi.org/10.1037/xge0001100

Trueblood, J. S., Holmes, W. R., Seegmiller, A. C., Douds, J., Compton, M., Szentirmai, E., Woodruff, M., Huang, W., Stratton, C., & Eichbaum, Q. (2018). The impact of speed and bias on the cognitive processes of experts and novices in medical image decision-making. Cognitive Research: Principles and Implications. https://doi.org/10.1186/s41235-018-0119-2

Wahlheim, C. N., McDaniel, M. A., & Little, J. L. (2016). Category learning strategies in younger and older adults: Rule abstraction and memorization. Psychology and Aging, 31(4), 346–357. https://doi.org/10.1037/pag0000083

Waite, S., Scott, J. M., Legasto, A., Kolla, S., Gale, B., & Krupinski, E. A. (2017). Systemic error in radiology. American Journal of Roentgenology, 209(3), 629–639. https://doi.org/10.2214/AJR.16.17719

Wang, M. W., & Stanley, J. C. (1970). Differential weighting: a review of methods and empirical studies. Review of Educational Research, 40(5), 663–705. https://doi.org/10.2307/1169462

Wilmer, J. B., Germine, L. T., & Nakayama, K. (2014). Face recognition: a model specific ability. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2014.00769