Object identification in computational ghost imaging based on deep learning
Tóm tắt
Processing method plays an important role in accelerating imaging process in ghost imaging. In this study, we propose a processing method with the Hadamard matrix and a deep neural network called ghost imaging hadamard neural network (GIHNN). We focus on how to break through the bottleneck of image reconstruction time, and GIHNN can identify an object before the imaging process. Our research reveals that the light intensity value contains the feature information of the object and expands the possibility of further applications of artificial intellectual techniques in computational ghost imaging.
Tài liệu tham khảo
T.B. Pittman, Y.H. Shih, D.V. Strekalov, Alexander V Sergienko, Optical imaging by means of two-photon quantum entanglement. Phys Rev A 52(5), R3429 (1995)
D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, D.M. Paganin, Experimental X-ray ghost imaging. Phys Rev Lett 117(11), 113902 (2016)
N.D. Hardy, J.H. Shapiro, Computational ghost imaging versus imaging laser radar for three-dimensional imaging. Phys Rev A 87(2), 023820 (2013)
W. Gong, C. Zhao, Y. Hong, M. Chen, X. Wendong, S. Han, Three-dimensional ghost imaging lidar via sparsity constraint. Sci Rep 6, 26133 (2016)
O. Katz, Y. Bromberg, Y. Silberberg, Compressive ghost imaging. Appl Phys Lett 95(13), 131110 (2009)
C.Zhao, W. Gong, M. Chen, E. Li, H. Wang, X. Wendong, S. Han, Ghost imaging lidar via sparsity constraints. Appl Phys Lett 101(14), 141123 (2012)
H. Xuemei, J. Suo, T. Yue, L. Bian, Q. Dai, Patch-primitive driven compressive ghost imaging. Opt Express 23(9), 11092–11104 (2015)
V. Katkovnik, J. Astola, Compressive sensing computational ghost imaging. JOSA A 29(8), 1556–1567 (2012)
Z. Yang, O.S. Magaña-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S.M.H. Rafsanjani, G.-L. Long, R.W. Boyd, Digital spiral object identification using random light. Light Sci Appl 6(7), e17013 (2017)
T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki et al., Computational ghost imaging using deep learning. Opt Commun 413, 147–151 (2018)
Y. He, G. Wang, G. Dong, S. Zhu, H. Chen, A. Zhang, X. Zhuo, Ghost imaging based on deep learning. Sci Rep 8(1), 6469 (2018)
M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, G. Situ, Deep-learning-based ghost imaging. Sci Rep 7(1), 17865 (2017)
F. Wang, H. Wang, H. Wang, G. Li, G. Situ, Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging. Opt Express 27(18), 25560–25572 (2019)
W. Heng, R. Wang, G. Zhao, H. Xiao, D. Wang, J. Liang, X. Tian, L. Cheng, X. Zhang, Sub-nyquist computational ghost imaging with deep learning. Opt Express 28(3), 3846–3853 (2020)
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)
J.H. Shapiro, Computational ghost imaging. Phys Rev A 78(6), 061802 (2008)
L. Basano, P. Ottonello, Experiment in lensless ghost imaging with thermal light. Appl Phys Lett 89(9), 091109 (2006)
Y. Hong, L. Ronghua, S. Han, H. Xie, D. Guohao, T. Xiao, D. Zhu, Fourier-transform ghost imaging with hard X rays. Phys Rev Lett 117(11), 113901 (2016)
A.V. Geramita, J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, vol. 45 (M. Dekker, New York, 1979)
W. Chen, X. Chen, Object authentication in computational ghost imaging with the realizations less than 5% of nyquist limit. Opt Lett 38(4), 546–548 (2013)
S. Lawrence, C.L. Giles, A.C. Tsoi, A.D. Back, Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1), 98–113 (1997)
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., Gradient-based learning applied to document recognition. Proc IEEE 86(11), 2278–2324 (1998)
A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105, (2012)
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions. In Proceedings of the IEEE Cnference on Computer Vision and Pattern Recognition, pages 1–9, (2015)
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, (2014)
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, (2016)
H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, (2017)
R.Y. Rubinstein, D.P. Kroese, The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning (Springer Science & Business Media, Berlin, 2013)
D. P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, (2014)