Object detection in security applications using dominant edge directions

Pattern Recognition Letters - Tập 52 - Trang 72-79 - 2015
Marcin Kmieć1, Andrzej Glowacz2
1Information Technology Systems Department, Jagiellonian University, ul. Lojasiewicza 4, 30-348 Krakow, Poland
2AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland

Tài liệu tham khảo

Nam, 2012, Intelligent video surveillance system: 3-tier context-aware surveillance system with metadata, Multimedia Tools Appl., 57, 315, 10.1007/s11042-010-0677-x Maalouf, 2012, Offline quality monitoring for legal evidence images in video-surveillance applications, Multimedia Tools Appl., 1 Tickner, 1973, Monitoring up to 16 synthetic television pictures showing a great deal of movement, Ergonomics, 16, 381, 10.1080/00140137308924529 Tadeusiewicz, 2011, How intelligent should be system for image analysis?, vol. 339 Hu, 2004, A survey on visual surveillance of object motion and behaviors, IEEE Trans. Syst. Man Cybern., 34 Kmieć, 2011, An approach to robust visual knife detection, machine graphics and vision, Mach. Graph. Vis., 20 N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: CVPR 2005. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, vol. 1, pp. 886–893, 25–25 June 2005. Lavee, 2007, A framework for a video analysis tool for suspicious event detection, Multimedia Tools Appl., 35, 109, 10.1007/s11042-007-0117-8 B. Kaluža, G. Kaminka, M. Tambe, Detection of suspicious behavior from a sparse set of multiagent interactions, in: AAMAS, Valencia, 2012. Liang, 2011, Human action segmentation and classification based on the Isomap algorithm, Multimedia Tools Appl. M. Nael, M. Abd El Wahab, M. El-Saban, Multi-view human action recognition system employing 2DPCA, in: WACV, 2011. Chen, 2013, A survey of human motion analysis using depth imagery, Pattern Recogn. Lett., 34, 1995, 10.1016/j.patrec.2013.02.006 D. Lowe, Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image, US6711293, March 24, 2004. I.T. Darker, P. Kuo, M.Y. Yang, A. Blechko, C. Grecos, D. Makris, J.-C. Nebel, A.G. Gale, Automation of the CCTV-mediated detection of individuals illegally carrying firearms: combining psychological and technological approaches, in: Z.-U. Rahman, S.E. Reichenbach, M.A. Neifeld (Eds.) Visual Information Processing XVIII. Proceedings of the SPIE, 2009. Manjunath, 2002 Grega, 2013, Automated recognition of firearms in surveillance video, 45 Rougier, 2011, Robust video surveillance for fall detection based on human shape deformation, IEEE Trans. Circuits Syst. Video Technol., 21, 611, 10.1109/TCSVT.2011.2129370 Bashir, 2010, Cross-view gait recognition using correlation strength, 10.5244/C.24.109 I.T. Darker, A.G. Gale, L. Ward, A. Blechko, Can CCTV reliably detect gun crime? in: Proc. 41st IEEE Int., 2007, pp. 264-271. I.T. Darker, A.G. Gale, A. Blechko, M. Whittle, Expertise and strategies in the detection of firearms via CCTV, in: Proc. HFES. Eur. Chapt., 2009. Dee, 2008, How close are we to solving the problem of automated visual surveillance?, Mach. Vis. Appl., 19, 329, 10.1007/s00138-007-0077-z Glowacz, 2013, Visual detection of knives in security applications using active appearance models, Multimedia Tools Appl., 23 Żywicki, 2011, Knife detection as a subset of object detection approach based on Haar cascades, 139 Viola, 2001, Rapid object detection using a boosted cascade of simple features, 10.1109/CVPR.2001.990517 Maksimova, 2013, Knife detection scheme based on possibilistic shell clustering, 144 Ukasha, 2009, An efficient method of contour compression, 213 Krishnapuram, 1995, Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. I, IEEE Trans. Fuzzy Syst., 3, 29, 10.1109/91.366564 Cootes, 2001, Active appearance models, IEEE Trans. Pattern Anal. Mach. Intell., 23, 681, 10.1109/34.927467 Bradski, 2008 Jaworek-Korjakowska, 2013, Hair removal from dermoscopic color images, Bio-Algorithms Med-Systems, 9, 53, 10.1515/bams-2013-0013 Kawulok, 2014, Spatial-based skin detection using discriminative skin-presence features, Pattern Recogn. Lett., 41, 3, 10.1016/j.patrec.2013.08.028 Canny, 1986, A Computational Approach to Edge Detection, 8, 679 Donahue, 1993, On the use of level curves in image analysis, 185 J.S. Stahl, Edge grouping for detecting salient boundaries with sharp corners, in Proceedings of the 4th Indian International Conference on Artificial Intelligence, IICAI 2009, Tumkur, Karnataka, India, December 16–18, 2009. Joachims, 1999, Making large-scale SVM learning practical. Advances in kernel methods – support vector learning, 169 Cao, 2008, Approximate RBF kernel SVM and its applications in pedestrian classification C.-W. Hsu, C.-C. Chang, C.-J. Lin, A Practical Guide to Support Vector Classification, 2010. N. Dalal, Finding people in images and videos, PhD thesis, Institut National Polytechnique de Grenoble, July 2006. Flasiński, 2014, Fundamental methodological issues of syntactic pattern recognition, Pattern Anal. Appl., 17, 465, 10.1007/s10044-013-0322-1