Object detection in security applications using dominant edge directions
Tài liệu tham khảo
Nam, 2012, Intelligent video surveillance system: 3-tier context-aware surveillance system with metadata, Multimedia Tools Appl., 57, 315, 10.1007/s11042-010-0677-x
Maalouf, 2012, Offline quality monitoring for legal evidence images in video-surveillance applications, Multimedia Tools Appl., 1
Tickner, 1973, Monitoring up to 16 synthetic television pictures showing a great deal of movement, Ergonomics, 16, 381, 10.1080/00140137308924529
Tadeusiewicz, 2011, How intelligent should be system for image analysis?, vol. 339
Hu, 2004, A survey on visual surveillance of object motion and behaviors, IEEE Trans. Syst. Man Cybern., 34
Kmieć, 2011, An approach to robust visual knife detection, machine graphics and vision, Mach. Graph. Vis., 20
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: CVPR 2005. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, vol. 1, pp. 886–893, 25–25 June 2005.
Lavee, 2007, A framework for a video analysis tool for suspicious event detection, Multimedia Tools Appl., 35, 109, 10.1007/s11042-007-0117-8
B. Kaluža, G. Kaminka, M. Tambe, Detection of suspicious behavior from a sparse set of multiagent interactions, in: AAMAS, Valencia, 2012.
Liang, 2011, Human action segmentation and classification based on the Isomap algorithm, Multimedia Tools Appl.
M. Nael, M. Abd El Wahab, M. El-Saban, Multi-view human action recognition system employing 2DPCA, in: WACV, 2011.
Chen, 2013, A survey of human motion analysis using depth imagery, Pattern Recogn. Lett., 34, 1995, 10.1016/j.patrec.2013.02.006
D. Lowe, Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image, US6711293, March 24, 2004.
I.T. Darker, P. Kuo, M.Y. Yang, A. Blechko, C. Grecos, D. Makris, J.-C. Nebel, A.G. Gale, Automation of the CCTV-mediated detection of individuals illegally carrying firearms: combining psychological and technological approaches, in: Z.-U. Rahman, S.E. Reichenbach, M.A. Neifeld (Eds.) Visual Information Processing XVIII. Proceedings of the SPIE, 2009.
Manjunath, 2002
Grega, 2013, Automated recognition of firearms in surveillance video, 45
Rougier, 2011, Robust video surveillance for fall detection based on human shape deformation, IEEE Trans. Circuits Syst. Video Technol., 21, 611, 10.1109/TCSVT.2011.2129370
Bashir, 2010, Cross-view gait recognition using correlation strength, 10.5244/C.24.109
I.T. Darker, A.G. Gale, L. Ward, A. Blechko, Can CCTV reliably detect gun crime? in: Proc. 41st IEEE Int., 2007, pp. 264-271.
I.T. Darker, A.G. Gale, A. Blechko, M. Whittle, Expertise and strategies in the detection of firearms via CCTV, in: Proc. HFES. Eur. Chapt., 2009.
Dee, 2008, How close are we to solving the problem of automated visual surveillance?, Mach. Vis. Appl., 19, 329, 10.1007/s00138-007-0077-z
Glowacz, 2013, Visual detection of knives in security applications using active appearance models, Multimedia Tools Appl., 23
Żywicki, 2011, Knife detection as a subset of object detection approach based on Haar cascades, 139
Viola, 2001, Rapid object detection using a boosted cascade of simple features, 10.1109/CVPR.2001.990517
Maksimova, 2013, Knife detection scheme based on possibilistic shell clustering, 144
Ukasha, 2009, An efficient method of contour compression, 213
Krishnapuram, 1995, Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. I, IEEE Trans. Fuzzy Syst., 3, 29, 10.1109/91.366564
Cootes, 2001, Active appearance models, IEEE Trans. Pattern Anal. Mach. Intell., 23, 681, 10.1109/34.927467
Bradski, 2008
Jaworek-Korjakowska, 2013, Hair removal from dermoscopic color images, Bio-Algorithms Med-Systems, 9, 53, 10.1515/bams-2013-0013
Kawulok, 2014, Spatial-based skin detection using discriminative skin-presence features, Pattern Recogn. Lett., 41, 3, 10.1016/j.patrec.2013.08.028
Canny, 1986, A Computational Approach to Edge Detection, 8, 679
Donahue, 1993, On the use of level curves in image analysis, 185
J.S. Stahl, Edge grouping for detecting salient boundaries with sharp corners, in Proceedings of the 4th Indian International Conference on Artificial Intelligence, IICAI 2009, Tumkur, Karnataka, India, December 16–18, 2009.
Joachims, 1999, Making large-scale SVM learning practical. Advances in kernel methods – support vector learning, 169
Cao, 2008, Approximate RBF kernel SVM and its applications in pedestrian classification
C.-W. Hsu, C.-C. Chang, C.-J. Lin, A Practical Guide to Support Vector Classification, 2010.
N. Dalal, Finding people in images and videos, PhD thesis, Institut National Polytechnique de Grenoble, July 2006.
Flasiński, 2014, Fundamental methodological issues of syntactic pattern recognition, Pattern Anal. Appl., 17, 465, 10.1007/s10044-013-0322-1