Obesity phenotypes in urban and rural Cameroonians: a cross-sectional study
Tóm tắt
Despite the increasing prevalence of diabetes and other health consequences of obesity, little is known on the metabolic profile across categories of body mass index (BMI) among African populations. We therefore assessed the prevalence and distribution of body size phenotypes among urban and rural Cameroonians. Adults (n = 1628; 41% rural dwellers) aged 24–74 years in 1994 provided data on BMI and metabolic health, defined on the basis of elevated levels of blood pressure (BP); triglycerides, fasting plasma glucose (FPG), and insulin resistance as assessed with homeostasis model assessment (HOMA). Cross-classification of BMI categories and metabolic status (healthy/unhealthy) created six groups. Metabolic measures include elevated blood pressure; elevated triglycerides (≥150 mg/dL or 1.69mmo/L), elevated fasting plasma glucose (≥100 mg/dl or 5.6 mmol/L or documented use of antidiabetic medications), and elevated homeostasis model assessment of insulin resistance value (HOMA-IR > 90th percentile). A total of 25.2% of participants were overweight yet metabolically healthy (<1 abnormality) and 10.1% were obese yet metabolically healthy, whereas 1.4% were normal weight but metabolically abnormal (≥2 abnormalities). Proportion of rural dwellers with abnormal metabolic phenotype across normal-weight, overweight, obese categories were 2.9%, 0.8% and 0.3%, respectively; and 0 .3%, 2.2% and 2.6% among urban dwellers. Metabolically abnormal participants increased linearly across BMI categories (p < 0.001). BMI categories and metabolic status interacted to affect age, gender, BMI, FPG, triglycerides, and BP status distributions (all p < 0.04). Metabolic status and residence (rural vs. urban) interacted to influence the distribution across BMI categories of diastolic BP, BMI, waist circumference, fasting and 2-hour glucose, triglycerides, HOMA-IR, and prevalent diabetes (all p < 0.005), with differential occurrence of BMI categories and metabolic status among urban and rural participants. Metabolic healthy obesity and obesity with a favorable cardiometabolic profile are not uncommon among Cameroonians, including among rural dwellers; but the latter group tended to have a better profile.
Tài liệu tham khảo
Stefan N, Haring HU, Hu FB, Schulze MB. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 2013;1(2):152–62.
Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008;168(15):1617–24.
Hamer M, Batty GD, Kivimaki M. Risk of future depression in people who are obese but metabolically healthy: the English longitudinal study of ageing. Mol Psychiatry. 2012;17(9):940–5.
Rey-Lopez JP, de Rezende LF, Pastor-Valero M, Tess BH. The prevalence of metabolically healthy obesity: a systematic review and critical evaluation of the definitions used. Obes Rev. 2014;15(10):781–90.
Kengne AP, Echouffo-Tcheugui J, Sobgnwi E, Mbanya JC. New insights on diabetes mellitus and obesity in Africa. Part 1: prevalence, pathogenesis and comorbidities. Heart. 2013;99(14):979–83.
Matsha TE, Hartnick MD, Kisten Y, Eramus RT, Kengne AP. Obesity phenotypes and subclinical cardiovascular diseases in a mixed-ancestry South African population: a cross-sectional study. J Diabetes. 2014;6(3):267–70.
Fezeu L, Kengne AP, Balkau B, Awah PK, Mbanya JC. Ten-year change in blood pressure levels and prevalence of hypertension in urban and rural Cameroon. J Epidemiol Community Health. 2010;64(4):360–5.
Sobngwi E, Mbanya JC, Unwin NC, Kengne AP, Fezeu L, Minkoulou EM, et al. Physical activity and its relationship with obesity, hypertension and diabetes in urban and rural Cameroon. Int J Obes Relat Metab Disord. 2002;26(7):1009–16.
Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498–504.
STEPwise approach to surveillance (STEPS). [http://www.who.int/chp/steps/en/]
Fezeu LK, Assah FK, Balkau B, Mbanya DS, Kengne AP, Awah PK, et al. Ten-year changes in central obesity and BMI in rural and urban Cameroon. Obesity (Silver Spring). 2008;16(5):1144–7.
Alberti KG, Zimmet P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539–53.
Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET. Metabolic and body composition factors in subgroups of obesity: what do we know? J Clin Endocrinol Metab. 2004;89(6):2569–75.
Boonchaya-anant P, Apovian CM. Metabolically healthy obesity–does it exist? Curr Atheroscler Rep. 2014;16(10):441.
Gottlieb MG, Closs VE, Rosemberg LS, Borges CA, Baptista RR, Tavares GM, et al. Lack of association of body composition and functionality variables with metabolic syndrome in the elderly. Metab Syndr Relat Disord. 2014;12(7):397–401.
Luke A, Durazo-Arvizu R, Rotimi C, Prewitt TE, Forrester T, Wilks R, et al. Relation between body mass index and body fat in black population samples from Nigeria, Jamaica, and the United States. Am J Epidemiol. 1997;145(7):620–8.
Prado CM, Siervo M, Mire E, Heymsfield SB, Stephan BC, Broyles S, et al. A population-based approach to define body-composition phenotypes. Am J Clin Nutr. 2014;99(6):1369–77.
Nagy P, Kovacs E, Moreno LA, Veidebaum T, Tornaritis M, Kourides Y, et al. Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study. Int J Obes (Lond). 2014;38 Suppl 2:S15–25.
Carrero JJ, Avesani CM. Pros and cons of body mass index as a nutritional and risk assessment tool in dialysis patients. Semin Dial. 2015;28(1):48–58.
Katchunga PB, Hermans M, Bamuleke BA, Katoto PC, Kabinda JM. Relationship between waist circumference, visceral fat and metabolic syndrome in a Congolese community: further research is still to be undertaken. Pan Afr Med J. 2013;14:20.