OPTIMALITY CONDITIONS FOR EFFICIENCY OF CONSTRAINED VECTOR EQUILIBRIUM PROBLEMS
Tóm tắt
Fritz John necessary conditions for local Henig and global efficient solutions of vector equilibrium problems involving equality, inequality and set constraints with nonsmooth functions are established via convexificators. Under suitable constraint qualications, Kuhn-Tucker necessary conditions for local Henig and gobally efficient solutions are derived. Note that Henig and global efficient solutions of (VEP) are studied with respect to a closed convex cone. Sufficient condition for Henig and globally efficient solutions are derived under some assumptions on asymptotic semiinvexityinfne of the problem. Some illustrative examples are also given.