OC_3S: An optical classification and spectral scoring system for global waters using UV–visible remote sensing reflectance
Tài liệu tham khảo
Al Shehhi, 2017, Improved atmospheric correction and chlorophyll-a remote sensing models for turbid waters in a dusty environment, ISPRS J. Photogramm. Remote Sens., 133, 46, 10.1016/j.isprsjprs.2017.09.011
Arrigo, 2011, Secular trends in Arctic Ocean net primary production, J. Geophys. Res. Oceans 116(C9)., 10.1029/2011JC007151
Arrigo, 2015, Continued increases in Arctic Ocean primary production, Prog. Oceanogr., 136, 60, 10.1016/j.pocean.2015.05.002
Bailey, 2006, A multi-sensor approach for the on-orbit validation of ocean color satellite data products, Remote Sens. Environ., 102, 12, 10.1016/j.rse.2006.01.015
Barnes, 2014, Use of Landsat data to track historical water quality changes in Florida Keys marine environments, Remote Sens. Environ., 140, 485, 10.1016/j.rse.2013.09.020
Behrenfeld, 2006, Climate-driven trends in contemporary ocean productivity, Nature, 444, 752, 10.1038/nature05317
Bi, 2019, Optical classification of inland waters based on an improved Fuzzy C-Means method, Opt. Express, 27, 34838, 10.1364/OE.27.034838
Cao, 2017, Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales, Remote Sens. Environ., 192, 98, 10.1016/j.rse.2017.02.007
Chen, 2021, An assessment of water color for inland water in China using a Landsat 8-derived Forel-Ule index and the Google Earth Engine platform, IEEE J. Selected Top. Appl. Earth Observat. Remote Sens., 14, 5773, 10.1109/JSTARS.2021.3085411
Chen, 2010, Coupling remote sensing retrieval with numerical simulation for SPM study—Taking Bohai Sea in China as a case, Int. J. Appl. Earth Obs. Geoinf., 12, S203
1932
Clark, 1997, Validation of atmospheric correction over the oceans, J. Geophys. Res. Atmos., 102, 17209, 10.1029/96JD03345
Clark, 2003, MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols, Ocean Opt. Protocols Satellite Ocean Color Sensor Valid. Volume 6: Special Topics Ocean Optics Protocols Append.
Cui, 2020, Remote sensing of chlorophyll a concentration in turbid coastal waters based on a global optical water classification system, ISPRS J. Photogramm. Remote Sens., 163, 187, 10.1016/j.isprsjprs.2020.02.017
Dierssen, 2022, QWIP: A quantitative metric for quality control of aquatic reflectance spectral shape using the Apparent Visible Wavelength, Front. Remote, 3, 32
Eleveld, 2017, An optical classification tool for global lake waters, Remote Sens. 9(5),, 420, 10.3390/rs9050420
Feng, 2014, Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS, Remote Sens. Environ., 140, 779, 10.1016/j.rse.2013.10.002
Gao, 2012, Vicarious calibrations of HICO data acquired from the International Space Station, Appl. Opt., 51, 2559, 10.1364/AO.51.002559
Garaba, 2014, Using ocean colour remote sensing products to estimate turbidity at the Wadden Sea time series station Spiekeroog, J. Euro. Opt. Soc.-Rapid Publicat., 10.2971/jeos.2014.14020
Han, 2015, Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013, Remote Sens. Environ., 156, 426, 10.1016/j.rse.2014.10.003
He, 2012, Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters, Opt. Express, 20, 20754, 10.1364/OE.20.020754
Hooker, 2002, An evaluation of above-and in-water methods for determining water-leaving radiances, J. Atmos. Oceanic, 19, 486, 10.1175/1520-0426(2002)019<0486:AEOAAI>2.0.CO;2
Hou, 2022, Global mapping reveals increase in lacustrine algal blooms over the past decade, Nat. Geosci., 15, 130, 10.1038/s41561-021-00887-x
Hu, 2012, Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference, J. Geophys. Res. Oceans117(C1), 10.1029/2011JC007395
Hu, 2013, Uncertainties of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements, Remote Sens. Environ., 133, 168, 10.1016/j.rse.2013.02.012
Hu, 2019, Improving satellite global chlorophyll a data products through algorithm refinement and data recovery, J. Geophys. Res. Oceans, 124, 1524, 10.1029/2019JC014941
Jackson, 2017, An improved optical classification scheme for the ocean colour essential climate variable and its applications, Remote Sens. Environ., 203, 152, 10.1016/j.rse.2017.03.036
Jain, 2010, Data clustering: 50 years beyond K-means, Pattern Recogn. Lett., 31, 651, 10.1016/j.patrec.2009.09.011
Jia, 2021, A universal fuzzy logic optical water type scheme for the global oceans, Remote Sens., 13, 4018, 10.3390/rs13194018
Knaeps, 2012, In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary, Remote Sens. Environ., 120, 133, 10.1016/j.rse.2011.07.025
Knaeps, 2015, A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters, Remote Sens. Environ., 168, 66, 10.1016/j.rse.2015.06.022
Le, 2011, Remote estimation of chlorophyll a in optically complex waters based on optical classification, Remote Sens. Environ., 115, 725, 10.1016/j.rse.2010.10.014
Lee, 2006
Lee, 2010, Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform, Optics Express, 18, 26313, 10.1364/OE.18.026313
Lehmann, 2023, GLORIA-A globally representative hyperspectral in situ dataset for optical sensing of water quality, Sci. Data, 10, 100, 10.1038/s41597-023-01973-y
Liu, H., He, X., Li, Q., Hu, X., Ishizaka, J., Kratzer, S., Yang, C., Shi, T., Hu, S., Zhou, Q.J.I.T.O.G., Sensing, R. 2021a. Evaluation of ocean colour atmospheric correction methods for Sentinel-3 OLCI using global automatic in-situ observations. IEEE Trans. Geosci. Remote Sens. 60, 1-19.
Liu, 2019, Determining switching threshold for NIR-SWIR combined atmospheric correction algorithm of ocean color remote sensing, ISPRS J. Photogramm. Remote Sens., 153, 59, 10.1016/j.isprsjprs.2019.04.013
Liu, 2021, Estimating ultraviolet reflectance from visible bands in ocean colour remote sensing, Remote Sens. Environ., 258, 10.1016/j.rse.2021.112404
MacQueen, 1967, Classification and analysis of multivariate observations. 5th Berkeley Symp, Math. Statist. Probability, 281
Mélin, 2015, How optically diverse is the coastal ocean?, Remote Sens. Environ., 160, 235, 10.1016/j.rse.2015.01.023
Men, 2022, Development of a deep learning-based atmospheric correction algorithm for oligotrophic oceans, IEEE Trans. Geosci. Remote Sens., 60, 1, 10.1109/TGRS.2022.3215767
Mobley, 1999, Estimation of the remote-sensing reflectance from above-surface measurements, Appl. Opt., 38, 7442, 10.1364/AO.38.007442
Moore, 2009, A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product, Remote Sens. Environ., 113, 2424, 10.1016/j.rse.2009.07.016
Morel, 1977, Analysis of variations in ocean color 1, Limnol. Oceanogr., 22(4), 709
Mueller, J.L., Morel, A., Frouin, R., Davis, C., Arnone, R., Carder, K., Lee, Z., Steward, R., Hooker, S., Mobley, C., & et al., 2003. Ocean optics protocols for satellite ocean color sensor validation, revision 4. Volume III: Radiometric measurements and data analysis protocols.
Nechad, 2015, CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters, Earth Syst. Sci. Data, 7, 319, 10.5194/essd-7-319-2015
Neil, 2019, A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types, Remote Sens. Environ., 229, 159, 10.1016/j.rse.2019.04.027
O’Reilly, 2000, Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4, SeaWiFS postlaunch calibration validation analyses, Part, 9
Pan, 2017, An improved spectral optimization algorithm for atmospheric correction over turbid coastal waters: A case study from the Changjiang (Yangtze) estuary and the adjacent coast, Remote Sens. Environ., 191, 197, 10.1016/j.rse.2017.01.013
Pitarch, 2019, Optical properties of Forel-Ule water types deduced from 15 years of global satellite ocean color observations, Remote Sens. Environ., 231, 111249, 10.1016/j.rse.2019.111249
Qin, 2017, Radiometric validation of atmospheric correction for MERIS in the Baltic Sea based on continuous observations from ships and AERONET-OC, Remote Sens. Environ., 200, 263, 10.1016/j.rse.2017.08.024
Qing, 2022, An optical water classification and quality control model (OC_QC model) for spectral diffuse attenuation coefficient, ISPRS J. Photogramm. Remote Sens., 189, 255, 10.1016/j.isprsjprs.2022.05.006
Serikova, 2019, High carbon emissions from thermokarst lakes of Western Siberia, Nat. Commun., 10, 1552, 10.1038/s41467-019-09592-1
Shi, 2013, Absorption characteristics of optically complex inland waters: Implications for water optical classification, J. Geophys. Res.Biogeosciences, 118, 860, 10.1002/jgrg.20071
Shi, 2013, Remote chlorophyll-a estimates for inland waters based on a cluster-based classification, Sci. Total Environ., 444, 1, 10.1016/j.scitotenv.2012.11.058
Simis, 2013, Unattended processing of shipborne hyperspectral reflectance measurements, Remote Sens. Environ., 135, 202, 10.1016/j.rse.2013.04.001
Singh, 2019, UV-NIR approach with non-zero water-leaving radiance approximation for atmospheric correction of satellite imagery in inland and coastal zones, Opt. Express, 27, A1118, 10.1364/OE.27.0A1118
Smith, 1992, Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters, Science, 255, 952, 10.1126/science.1546292
Spyrakos, 2018, Optical types of inland and coastal waters, Limnol. Oceanogr., 63, 846, 10.1002/lno.10674
Sun, 2013, Hyperspectral remote sensing of the pigment c-phycocyanin in turbid inland waters, based on optical classification, IEEE Trans. Geosci. Remote Sens., 51, 3871, 10.1109/TGRS.2012.2227976
Turner, 2022, Optical classification of an urbanized estuary using hyperspectral remote sensing reflectance, Opt. Express, 30, 41590, 10.1364/OE.472765
Valente, 2022, A compilation of global bio-optical in situ data for ocean-colour satellite applications–version three, Earth Syst. Sci. Data, 14, 5737, 10.5194/essd-14-5737-2022
van der Woerd, 2015, True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS. MERIS and OLCI, Sensors, 15, 25663, 10.3390/s151025663
Vandermeulen, 2020, 150 shades of green: Using the full spectrum of remote sensing reflectance to elucidate color shifts in the ocean, Remote Sens. Environ., 247, 10.1016/j.rse.2020.111900
Vantrepotte, 2012, Optical classification of contrasted coastal waters, Remote Sens. Environ., 123, 306, 10.1016/j.rse.2012.03.004
Walter Anthony, 2018, 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes, Nat. Commun., 9, 3263, 10.1038/s41467-018-05738-9
Wang, 2021, Extending satellite ocean color remote sensing to the near-blue ultraviolet bands, Remote Sens. Environ., 253, 112228, 10.1016/j.rse.2020.112228
Wang, 2018, Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index, Remote Sens. Environ., 217, 444, 10.1016/j.rse.2018.08.026
Wang, 2020, Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS, Remote Sens. Environ., 247, 10.1016/j.rse.2020.111949
Wang, 2021, A dataset of remote-sensed Forel-Ule Index for global inland waters during 2000–2018, Sci. Data, 8, 26, 10.1038/s41597-021-00807-z
Wang, 2016, VIIRS-derived chlorophyll-a using the ocean color index method, Remote Sens. Environ., 182, 141, 10.1016/j.rse.2016.05.001
Wei, 2016, Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance, J. Geophys. Res. Oceans, 121, 1953, 10.1002/2015JC011415
Wei, 2016, A system to measure the data quality of spectral remote-sensing reflectance of aquatic environments, J. Geophys. Res. Oceans, 121, 8189
Wei, 2020, Improving low-quality satellite remote sensing reflectance at blue bands over coastal and inland waters, Remote Sens. Environ., 250, 112029, 10.1016/j.rse.2020.112029
Wei, 2022, Global satellite water classification data products over oceanic, coastal, and inland waters, Remote Sens. Environ., 282, 10.1016/j.rse.2022.113233
Werdell, 2003, Unique data repository facilitates ocean color satellite validation, Eos Trans. AGU, 84, 377, 10.1029/2003EO380001
Werdell, 2019, The plankton, aerosol, cloud, ocean ecosystem mission: status, science, advances, Bull. Am. Meteorol. Soc., 100, 1775, 10.1175/BAMS-D-18-0056.1
Werdell, 2019, Sensitivity of inherent optical properties from ocean reflectance inversion models to satellite instrument wavelength suites, Front. Earth Sci., 7, 54, 10.3389/feart.2019.00054
Wernand, 2010, Spectral analysis of the Forel-Ule ocean colour comparator scale, J. Euro. Opt. Soc.-Rapid Pub., 5, 10.2971/jeos.2010.10014s
Yang, 2022, Monitoring water color anomaly of lakes based on an integrated method using Landsat-8 OLI images, Int. J. Digital Earth, 15, 1567, 10.1080/17538947.2022.2122609
Zepp, 2007, Interactive effects of solar UV radiation and climate change on biogeochemical cycling, Photochem. Photobiol. Sci., 6, 286, 10.1039/b700021a
Zhang, 2009, The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence, Water Res., 43, 4685, 10.1016/j.watres.2009.07.024
Zhao, 2021, Development of a practical atmospheric correction algorithm for inland and nearshore coastal waters, IEEE Trans. Geosci. Remote Sens., 60, 1, 10.1109/TGRS.2020.3042202
Zibordi, 2002, Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment. In, J. Atmos. Oceanic Tech., 19, 808, 10.1175/1520-0426(2002)019<0808:AAWRMF>2.0.CO;2