Nutritional composition of insect types most commonly consumed by the Olugboja Community of Ondo State, Nigeria

International Journal of Tropical Insect Science - Tập 41 - Trang 2975-2982 - 2021
Temitope D. Awobusuyi1, Muthulisi Siwela1, Kirthee Pillay1
1Department of Dietetics and Human Nutrition, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa

Tóm tắt

Edible insects have a varied nutritional value and have been a part of the human diet since the early ages. Protein-energy malnutrition (PEM) remains a challenge, particularly in developing regions, because of prevalent poverty and food insecurity and the high prices of conventional animal protein sources. There is an urgent need to find alternative affordable sources of quality protein. This study determined the nutritional composition of some commonly consumed insect species: cricket, palm weevil, termite and grasshopper. Protein was the most abundant macronutrient in all the insect species, it ranged from 36.5 % in palm weevil to 60.2 % in termite. The fat percentage was lowest in cricket (17.5 %) and highest in palm weevil (39.5 %). The analysed insects proved to be a good source of fibre which is mainly represented by chitin found in the insect exoskeleton. The fibre content ranged between 3.2 % in palm weevil to 5.2 % in termite and grasshopper. Total ash content ranged between 4.1 % (grasshopper) to 5.7 % (palm weevil). The carbohydrate content of termite was the lowest at 5.2 %, while cricket recorded the highest at 16.1 %. Amino acids were present in substantial amounts in all insects, including lysine and methionine. All insect species were rich in magnesium, copper, iron, and zinc and the levels were comparable to the FAO/WHO/UN recommended daily intakes (mg/day) for minerals.

Tài liệu tham khảo

Abbasi TA, Abbasi SA (2011) A more sumptuous and sustainable source of animal protein than macro livestock: edible insects www.worldforum.org/parallel-session-workshop-sept-20-2011 Accessed 24 July 2019 Adegbola AJ, Awagu FE, Arowora K, Ojuekaiye O, Anugwom U, Kashetu QR (2013) Entomophagy: A panacea for protein-deficient-malnutrition and food insecurity in Nigeria. J Agric Sci 5:25–31 Adeyemo OE, Idowu OE, Ogabiela EE, Onianwa PC (2001) Copper and zinc contents of Nigerian foods and estimates of the adult dietary intakes. Food Chem 72:87–95 Akullo J, Agea JG, Obaa BB, Acai JO, Nakimbugwe D (2017) Process development, sensory and nutritional evaluation of honey spread enriched with edible insect flour. Afr J Food Sci 11:30–39 Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: The 2012 Revision. Global Perspective Studies Team ESA Working Paper No 12 – 03 http://www.fao.org/3/a-ap106e.pdf Accessed 25 June 2019 Amadi EN, Kiin-Kabari DB (2016) Nutritional composition and microbiology of some edible insects commonly eaten in Africa, hurdles and future prospects: A critical review. J Food Microbiol Saf Hyg. https://doi.org/10.4172/2476-2059.1000107 Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, Williams CL (2009) Health benefits of dietary fibre. Nutr Rev 67:188–205 Association of Official Analytical Chemists (AOAC) International (2002) Official methods of analysis, 17th ed. Volume I and II. AOAC International Arlington, Virginia, USA Association of Official Analytical Chemists (AOAC) International (1984) Official methods of analysis, 14th edn. AOAC International Arlington, Virginia Association of Official Analytical Chemists (AOAC) International (1990) Official methods of analysis, 15th edn. AOAC International Arlington, Virginia Awobusuyi TD, Pillay K, Siwela M (2020) Consumer acceptance of biscuits supplemented with a sorghum– insect meal. Nutrients 12:895 Banjo AD, Lawal OA, Songonuga EA (2006) The nutritional value of fourteen species of edible insects in South-western Nigeria. Afri J Biotechnol 5:298–301 Belluco S, Losasso C, Maggioletti M, Alonzi CC, Paoletti MG, Ricci A (2013) Edible insects in a food safety and nutritional perspective: A critical review. Compr Rev Food Sci Food Saf 12:296–313 Bukkens SGF (1997) The nutritional value of edible insects. Ecol Food Nutr 36:287–319 Bukkens SGF (2005) Insects in the human diet: nutritional aspects. In: Paoletti MG (ed) Ecological implications of mini livestock; role of rodents, frogs, snails, and insects for sustainable development. Science Publishers, New Hampshire Caballero F, Fernández A, Matías N, Martínez L, Fucho R, Montserrat E, Caballeria J, Morales A, Fernández-Checa JC, García-Ruiz C (2010) Specific contribution of methionine and choline in nutritional non-alcoholic steatohepatitis: impact on mitochondrial s-adenosyl-l-methionine and glutathione. J Biol Chem 285:18528–18536 Christensen DL, Orech FO, Mungai MN, Larsen T, Friis H, Aagaard-Hansen J (2006) Entomophagy among the Luos of Kenya: a potential mineral source? Int J Food Sci Nutr 57:198–203 De Benoist B, McLean E, Cogswell M, Egli I, Wojdyla D (2009) Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr 12:444–454 DeFoliart GR (1992) Insects as human food. Crop Prot 11:395–399 Eilenberg J, Vlak JM, Nielsen-Leroux C, Cappellozza S, Jensen AB (2015) Diseases in insects produced for food and feed. J Insects as Food Feed 1:87–102 Ekwochi U, Odetunde OI, Maduka IC, Azubuike JC, Obi IE (2013) Iron deficiency among non-anaemic under-five children in Enugu, South-East, Nigeria. Ann Med Health Sci Res 3:402–406 Finke MD, Oonincx DD (2014) Insects as food for insectivores. In: Morales-Ramos J, Rojas G, Shapiro-Ilan DI (eds) Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens. Elsevier publishers, New York Food and Agriculture Organization of the United Nations (FAO) (2012) Assessing the potential of insects as food and feed in assuring food security. In: Vantomme P, Mertens E, Van Huis A, Klunder H (eds) www.fao.org/3/an233e/an233e00.pdf Accessed 01 February 2019 Food and Agriculture Organization/ United Nations/ World Health Organization (FAO/UN/WHO) (2007) Protein and amino acid requirements in human nutrition. Summary report of a joint FAO/WHO/UNU expert consultation meeting. https://apps.who.int/iris/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf?ua=1 Accessed 28 April 2019 Food and Agriculture Organization/World Health Organization (FAO/WHO) (2006) Vitamin and mineral requirements in human nutrition https://apps.who.int/iris/bitstream/handle/10665/42716/9241546123.pdf Accessed 08 June 2019 Gehlert S, Bloch W, Suhr F (2015) Ca2+-Dependent regulations and signalling in skeletal muscle: From electro-mechanical coupling to adaptation. Int J Mol Sci 16:1066–1095 Gibson RS (2015) Dietary-induced zinc deficiency in low income countries: challenges and solutions the avanelle kirksey lecture at Purdue University. Nutr Today 50:49–55 Harika R, Faber M, Samuel F, Mulugeta A, Kimiywe J, Eilander A (2017) Are low intakes and deficiencies in iron, vitamin A, zinc and iodine of public health concern in Ethiopian, Kenyan, Nigerian, and South African Children and Adolescents? Food Nutr Bull 38:405–427 Hellwig JP, Otten JJ, Meyers LD (2006) Dietary Reference Intakes: The Essential Guide to Nutrient Requirements: Institute of Medicine of the National academies. Washington, DC: National Academies Press. https://www.nap.edu/read/11537/chapter/1#ii Accessed 22 May 2019 Hunt AS, Ward AM, Ferguson G (2001) Effects of a high calcium diet on gut loading in varying ages of crickets (Acheta domestica) and mealworms (Tenebrio molitor), 2nd ed. In Edwards M, Lisi KJ, Schlegel ML, Bray RE, eds. Proceedings of the Fourth Conference on Zoo and Wildlife Nutrition, AZA Nutrition Advisory Group, Lake Buena Vista, Florida Jenkins TA, Nguyen JC, Polglaze KE, Bertrand PP (2016) Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 8:2–15 Kouřimská L, Adámková A (2016) Nutritional and sensory quality of edible insects. Nutr Food Sci 4:22–26 Matthews DE (2020) Review of Lysine Metabolism with a Focus on Humans. J Nutr 150(1):2548S–2555S National Center for Biotechnology Information (NCBI) (2020) PubChem Compound Summary for CID 6288, L-Threonine. https://pubchem.ncbi.nlm.nih.gov/compound/L-Threonine. Accessed 02 December 2020 Nowak V, Persijn D, Rittenschober D, Charrondiere UR (2016) Review of food composition data for edible insects. Food Chem 193:39–46 Ntukuyoh AI, Udiong DS, Ikpe E, Akpakpan AE (2012) Evaluation of nutritional value of termites (Macrotermes bellicosus): soldiers, workers, and queen in the Niger Delta region of Nigeria. Inter J Food Nutr Saf 1:60–65 Ogungbenle HN, Olaleye AA, Ayeni KE (2013) Amino acid composition of three freshwater fish samples commonly found southwestern states of Nigeria. Elixir Food Science 62:17411–17415 Olsen RL, Hasan MR (2012) A limited supply of fishmeal: impact on future increases in global aquaculture production. Trends in Food Sci Technol 27:120–128 Oonincx DGAB, Dierenfeld ES (2012) An investigation into the chemical composition of alternative invertebrate prey: Nutrient content of alternative prey species for insectivores. Zoo Biol 31:40–54 Oyarzun SE, Crawshaw GJ, Valdes EV (1996) Nutrition of the Tamandua: Nutrient composition of termites (Nasutitermes spp.) and stomach contents from wild tamanduas (Tamandua tetradactyla). Zoo Biol 15:509–524 Paoletti M, Buscardo E, Vanderjagt D, Pastuszyn A, Pizzoferrato L, Huang YS, Cerda H (2003) Nutrient content of termites (Syntermes soldiers) consumed by makiritare amerindians of the altoorinoco of Venezuela. Ecol Food Nutr 42:177–191 Park BK, Kim MM (2010) Applications of chitin and its derivatives in biological medicine. Inter J Mol Sci 11:5152–5164 Pearson D, Egan H, Sawyer R, Kirk RS (1981) Chemical analysis of foods, Pearson’s chemical analysis of foods, 8th ed, Edinburgh; Churchill Livingstone publishers Probst Y (2008) Nutrient composition of chicken meat: A report of National Centre of Excellence in Functional Foods. University of Wollongong: Australia, RIRDC Project https://www.agrifutures.com.au/wpcontent/uploads/publications/08-210.pdf Accessed 15 February 2019 Ramakrishnan U, Imhoff-Kunsch B (2008) Anaemia and Iron deficiency in developing countries, 2nd ed. In: Lammi-Keefe CJ, Couch SC, Philipson EH, eds. Handbook of Nutrition and Pregnancy. Totowa: Humana Press Ramos-Elorduy J, Moreno JM, Prado E, Perez M (1997) Nutritional value of edible insects from the State of Oaxaca, Mexico. J Food Compos Anal 10:142–157 Roos N (2018) Insects and Human Nutrition. In: Halloran A et al (eds) Edible Insects in Sustainable Food Systems. Springer International Publishers, Frankfurt Rosegrant MW, Tokgoz S, Bhandary P (2012) The new normal? A tighter global agricultural supply and demand relation and its implications for food security. Am J Agr Econ 95:303–309 Rumpold BA, Schlüter OK (2013) Potential and challenges of insects as an innovative source for food and feed production. Innov Food Sci Emerg Technol 17:1–11 Srivastava SK, Babu N, Pandey H (2009) Traditional insect bioprospecting- As human food and medicine. Indian J Tradit Know 8:485–494 van Huis A (2015) Edible insects contributing to food security? Agric Food Secur 4:1–20 van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects: future prospects for food and feed security www.fao.org/3/i3253e/i3253e.pdf Accessed 11 March 2019 Williams P (2007) Nutritional composition of red meat. Nutr Diet 64:S113–S119 World Health Organization (WHO) (2005) Health effect of lead-exposure: A review of the literature and a risk estimate. Scand J Work Env Hea 24:1–51 Zielińska E, Baraniak B, Karaś M, Rybczyńska K, Jakubczyk A (2015) Selected species of edible insects as a source of nutrient composition. Food Res Int 77:460–466