Nutritional Requirements to Improve Delta-Endotoxins Production of Bacillus thuringiensis var. kurstaki Using Mixed Designs Modelling

Karim Ennouri1, Hanen Ben Hassen2, Nabil Zouari3
1Team of Biopesticides, Laboratory of Protection and Improvement of Plants, Centre of Biotechnology of Sfax, Sfax, Tunisia
2Laboratory of Physics, Mathematics and Applications, Sfax University, Sfax, Tunisia
3Biological & Environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar

Tóm tắt

Bacillus thuringiensis kurstaki is a soil bacterium that produces insecticidal toxins called delta-endotoxins. In order to increase the toxic crystal concentrations in a low-cost culture medium and thus improve the biopesticide quality to control insect pests, the Plackett–Burman screening method was applied. It was shown a tool to evaluate the significance of the selected seven factors (KH2PO4, K2HPO4, MgSO4, MnSO4, FeSO4, soybean meal, starch) which are necessary to the production of the delta-endotoxins. This was performed into two different shake flasks (250 and 500 ml). The main factors that affected the production of delta-endotoxins are shown to be soybean meal, starch, and FeSO4 in 250 ml culture flasks. In 500 ml culture flasks, soybean meal and FeSO4 are the principal factors influencing the delta-endotoxin production. The multiple linear regression, a method applied as the merging dataset of the two Plackett–Burman designs, established that soybean meal and starch are the factors positively affecting the production of delta-endotoxins, in contrast to FeSO4. Furthermore, the available oxygen in culture flasks showed no significant negative effect on delta-endotoxin production. This study revealed that mixed method designs were useful to identify the significance and the effect of hidden culture parameters.

Tài liệu tham khảo

Shieh TR (1988) Bacillus thuringiensis biological insecticide and biotechnology. ACS Symp Ser 362:207–216. doi:10.1021/bk-1988-0362.ch017 Van Frankenhuysen K, Nystrom C (2002) The Bacillus thuringiensis delta-endotoxin specificity database. http://www.glfc.forestry.ca/bacillus/. Accessed 20 June 2014 Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813 Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:772–806 Reicheldelfer KH (1981) Economic feasibility of biological control of crop pests. In: Papavizas GC (Ed) Biological control in crop production. BARC Symposium N°5, Allenheld, Osmun, Totowa, pp 403-417 Poopathi S, Archana B (2012) Optimization of medium composition for the production of mosquitocidal toxins from Bacillus thuringiensis subsp. israelensis. Indian J Exp Biol 50:65–71 Ennouri K, Ben Hassen H, Ben Khedher S, Zouari N (2013) Concomitant production of delta-endotoxins and proteases of Bacillus thuringiensis subsp. kurstaki in a low-cost medium: effect of medium components. Acta Biol Szeged 57:13–19 Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325. doi:10.1093/biomet/33.4.305 Long-Shan TL, Chieh-Chang P, Bo-Kun T (2003) The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures. Process Biochem 38:1317–1326. doi:10.1016/S0032-9592(02)00330-8 Bauer DJ, Curran PJ (2005) Probing interactions in fixed and multilevel regression: inferential and graphical techniques. Multivar Behav Res 40:373–400. doi:10.1207/s15327906mbr4003_5 Johnson RB, Onwuegbuzie AJ (2004) Mixed methods research: a research paradigm whose time has come. Educ Res 33:14–26. doi:10.3102/0013189X033007014 Onwuegbuzie AJ, Teddlie C (2003) A framework for analyzing data in mixed methods research. In: Tashakkori A, Teddlie C (eds) Handbook of mixed methods in social and behavioral research. Sage, Thousand Oaks, pp 351–383 Saadaoui I, Al-Thani R, Al-Saadi F, Hassan NB, Abdelkefi-Mesrati L, Schultz P, Rouis S, Jaoua S (2010) Characterization of tunisian Bacillus thuringiensis strains with abundance of kurstaki subspecies harbouring insecticidal activities against the Lepidopteran insect Ephestia kuehniella. Curr Microbiol 61:541–548. doi:10.1007/s00284-010-9650-1 Ghribi D, Zouari N, Jaoua S (2004) Improvement of bioinsecticides production through mutagenesis of Bacillus thuringiensis by u.v. and nitrous acid affecting metabolic pathways and/or delta-endotoxin synthesis. J Appl Microbiol 97:338–346. doi:10.1111/j.1365-2672.2004.02323.x Zouari N, Dhouib A, Ellouz R, Jaoua S (1998) Nutritional requirements of a Bacillus thuringiensis subsp. kurstaki strain and use of gruel hydrolysate for the formulation of a new medium for delta-endotoxin production. Appl Biochem Biotechnol 69:41–52. doi:10.1007/BF02786020 Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3 Bull AT, Huck TA, Bushell ME (1990) Optimization strategies in microbial process development and operation. In: Poole RK, Bazin MJ, Keevil CW (eds) Microbial growth dynamics. IRL Press, Oxford, pp 145–168 Creswell JW, Plano Clark VL (2007) Designing and conducting mixed methods research. Sage, Thousand Oaks Khuri AI, Cornell JA (1987) Response surfaces: design and analysis. Marcel Dekker, New York Icgen Y, Icgen B, Ozcengiz G (2002) Regulation of crystal protein biosynthesis by Bacillus thuringiensis I. Effects of mineral elements and pH. Res Microbiol 153:599–604. doi:10.1016/S0923-2508(02)01367-0 Ozkan M, Dilek FB, Yetis U, Ozcengiz G (2003) Nutritional and cultural parameters influencing antidipteran delta-endotoxin production. Res Microbiol 154:49–53. doi:10.1016/S0923-2508(02)00006-2 El-Bendary MA (2006) Bacillus thuringiensis and Bacillus sphaericus biopesticides production. J Basic Microbiol 46:158–170. doi:10.1002/jobm.200510585 Zouari N, Achour O, Jaoua S (2002) Production of delta-endotoxin by Bacillus thuringiensis subsp. kurstaki and overcome of catabolite repression, by using highly concentrated gruel and fish meal media in 2 and 20 dm3 fermenters. J Chem Technol Biotechnol 77:877–882. doi:10.1002/jctb.650 Foda MS, Salama HS, Selim M (1985) Factors affecting growth and physiology of Bacillus thuringiensis. Appl Microbiol Biotechnol 22:50–52. doi:10.1007/BF00252156 Pearson D, Ward OP (1988) Effect of culture conditions on growth and sporulation of Bacillus thuringiensis subsp. israelensis and development of media for production of the crystal endotoxin. Biotechnol Lett 10:451–456. doi:10.1007/BF01027055 Ghribi D, Zouari N, Trabelsi H, Jaoua S (2007) Improvement of Bacillus thuringiensis delta-endotoxin production by overcome of carbon catabolite repression through adequate control of aeration. Enzyme Microb Technol 40:614–622. doi:10.1016/j.enzmictec.2006.05.015 Prabakaran G, Balaraman K (2006) Development of a cost-effective medium for the large-scale production of Bacillus thuringiensis var israelensis. Biol Control 36:288–292. doi:10.1016/j.biocontrol.2005.09.018 Tirado-Montiel MI, Tyagi RD, Valero JR (2001) Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides. Water Res 35:3807–3816. doi:10.1016/S0043-1354(01)00103-8 Gong Y, Li M, Xu D, Wang H, He J, Wu D, Chen D, Qiu N, Bao Q, Sun M, Yu Z (2012) Comparative proteomic analysis revealed metabolic changes and the translational regulation of Cry protein synthesis in Bacillus thuringiensis. J Proteomics 75:1235–1246. doi:10.1016/j.jprot.2011.10.037 Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90:8995–9005. doi:10.1029/JC090iC05p08995