Nutrient uptake and primary production in lithifying peritidal tufa stromatolites
Tài liệu tham khảo
Aberle, 2006, “Spectral fingerprinting” for specific algal groups on sediments in situ: a new sensor, Arch. Hydrobiol., 167, 575, 10.1127/0003-9136/2006/0167-0575
Allen, 2009, Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay, Geobiology, 7, 82, 10.1111/j.1472-4669.2008.00187.x
Allwood, 2018, Reassessing evidence of life in 3,700-million-year-old rocks of Greenland, Nature, 563, 241, 10.1038/s41586-018-0610-4
Anthony, K.R.N., A. Kleypas, J., Gattuso, J.-P., 2011. Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification. Glob. Chang. Biol. 17, 3655–3666. doi:https://doi.org/10.1111/j.1365-2486.2011.02510.x
Babilonia, 2018, Comparative metagenomics provides insight into the ecosystem functioning of the Shark Bay Stromatolites, Western Australia, Front. Microbiol., 9, 1, 10.3389/fmicb.2018.01359
Brito, 2013, Measuring light attenuation in shallow coastal systems, J. Ecosyst. Ecography, 3, 10.4172/2157-7625.1000122
Buick, 2008, When did oxygenic photosynthesis evolve?, Philos. Trans. R. Soc. B Biol. Sci., 363, 2731, 10.1098/rstb.2008.0041
Burns, 2009, Modern analogues and the early history of microbial life, Precambrian Res., 173, 10, 10.1016/j.precamres.2009.05.006
Cai, 2013, Nutrient recovery from wastewater streams by microalgae: status and prospects, Renew. Sust. Energ. Rev., 19, 360, 10.1016/j.rser.2012.11.030
Centeno, 2012, Microbialite genetic diversity and composition relate to environmental variables, FEMS Microbiol. Ecol., 82, 724, 10.1111/j.1574-6941.2012.01447.x
Cooper, 2013, Contemporary stromatolite formation in high intertidal rock pools, Giant’s Causeway, Northern Ireland: preliminary observations, J. Coast. Res., 165, 1675, 10.2112/SI65-283.1
Costerton, 1995, Microbial biofilms, Annu. Rev. Microbiol., 49, 711, 10.1146/annurev.mi.49.100195.003431
de Jonge, 1980, Fluctuations in the organic carbon to chlorophyll a ratios for estuarine benthic diatom populations, Mar. Ecol. Prog. Ser., 2, 345, 10.3354/meps002345
Decho, 2000, Microbial biofilms in intertidal systems: an overview, Cont. Shelf Res., 20, 1257, 10.1016/S0278-4343(00)00022-4
Des Marais, 1997, Long-term evolution of the biogeochemicalcarbon cycle, 76, 427
Des Marais, 2003, Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere, Biol. Bull., 204, 160, 10.2307/1543552
Dodd, 2018, Hydrochemistry of peritidal stromatolite pools and associated freshwater inlets along the Eastern Cape coast, South Africa, Sediment. Geol., 373, 163, 10.1016/j.sedgeo.2018.06.002
Domagal-Goldman, 2018
Dupraz, 2005, Microbial lithification in marine stromatolites and hypersaline mats, Trends Microbiol., 13, 429, 10.1016/j.tim.2005.07.008
Edwards, 2017, Macro- and meso-fabric structures of peritidal tufa stromatolites along the Eastern Cape coast of South Africa, Sediment. Geol., 359, 62, 10.1016/j.sedgeo.2017.08.006
Fenchel, 1998, Artificial cyanobacterial mats: cycling of C, O, and S, Aquat. Microb. Ecol., 14, 253, 10.3354/ame014253
Forbes, 2010, A characterisation of the coastal tufa deposits of south-west Western Australia, Sediment. Geol., 232, 52, 10.1016/j.sedgeo.2010.09.009
Garcia-Pichel, 2004, Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites, Geobiology, 2, 49, 10.1111/j.1472-4669.2004.00017.x
Glud, 1992, Photosynthesis and photosynthesis-coupled respiration in natural biofilms quantified with oxygen microsensors, J. Phycol., 28, 51, 10.1111/j.0022-3646.1992.00051.x
Grotzinger, 1999, Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?, Annu. Rev. Earth Planet. Sci., 27, 313, 10.1146/annurev.earth.27.1.313
Hall, 2007, Measuring freshwater primary production and respiration, 175
Hein, 1995, Size-dependent nitrogen uptake in micro- and macroalgae, Mar. Ecol. Prog. Ser., 118, 247, 10.3354/meps118247
Hoehler, 2001, The role of microbial mats in the production of reduced gases on the early earth, Nature, 412, 324, 10.1038/35085554
Jørgensen, 2001, Space for hydrogen, Nature., 10.1038/35085676
Knoll, 2016, Life: the first two billion years, Philos. Trans. R. Soc. B Biol. Sci., 371, 10.1098/rstb.2015.0493
Kuhl, 1996, Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm, J. Phycol., 32, 799, 10.1111/j.0022-3646.1996.00799.x
Lalonde, 2015, Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis, Proc. Natl. Acad. Sci., 112, 995, 10.1073/pnas.1415718112
Logan, 1961, Cryptozoon and associate stromatolites from the recent, Shark Bay, Western Australia, J. Geol., 69, 517, 10.1086/626769
McConnaughey, 1997, Calcification generates protons for nutrient and bicarbonate uptake, Earth-Sci. Rev., 42, 95, 10.1016/S0012-8252(96)00036-0
Miranda, 2016, An invasive polychaete species found in living marine stromatolites, Aquat. Invasions, 11, 257, 10.3391/ai.2016.11.3.04
Nash, 2014
Nutman, 2016, Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures, Nature, 537, 535, 10.1038/nature19355
Nutman, 2019, Cross-examining Earth’s oldest stromatolites: seeing through the effects of heterogeneous deformation, metamorphism and metasomatism affecting Isua (Greenland) ~3700 ma sedimentary rocks, Precambrian Res., 105347
Ohde, 1999, Carbon dioxide flux and metabolic processes of a coral reef, Okinawa, Bull. Mar. Sci., 65, 559
Olson, 2004, Thinking about the evolution of photosynthesis, Photosynth. Res., 80, 373, 10.1023/B:PRES.0000030457.06495.83
Ortega-Morales, 2010, Valuable processes and products from marine intertidal microbial communities, Curr. Opin. Biotechnol., 21, 346, 10.1016/j.copbio.2010.02.007
Paerl, 1996, A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling, Microb. Ecol., 31, 225, 10.1007/BF00171569
Paerl, 2001, Bacterially mediated precipitation in marine stromatolites, Environ. Microbiol., 3, 123, 10.1046/j.1462-2920.2001.00168.x
Perissinotto, 2014, Tufa stromatolite ecosystems on the South African south coast, S. Afr. J. Sci., 110, 1, 10.1590/sajs.2014/20140011
Petroff, 2011, Reaction–diffusion model of nutrient uptake in a biofilm: theory and experiment, J. Theor. Biol., 289, 90, 10.1016/j.jtbi.2011.08.004
Potts, 1994, Desiccation tolerance of prokaryotes, Microbiol. Rev., 58, 755, 10.1128/MMBR.58.4.755-805.1994
Reid, 2000, The role of microbes in accretion, lamination and early lithification of modern marine stromatolites, Nature, 406, 989, 10.1038/35023158
Reid, 2003, Microbial processes forming marine stromatolites, 103
Revsbech, 1986, Microelectrodes: their use in microbial ecology, Adv. Microb. Ecol., 10.1007/978-1-4757-0611-6_7
Revsbech, 1981, Primary production oxygen microprofile, Science (80-.), 26, 717
Revsbech, 1986, Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data l, Limnol. Oceanogr., 31, 293, 10.4319/lo.1986.31.2.0293
Rishworth, 2016, Coexisting living stromatolites and infaunal metazoans, Oecologia, 182, 539, 10.1007/s00442-016-3683-5
Rishworth, 2016, Environmental influences on living marine stromatolites: insights from benthic microalgal communities, Environ. Microbiol., 18, 503, 10.1111/1462-2920.13116
Rishworth, 2016, Environmental influences on living marine stromatolites: insights from benthic microalgal communities, Environ. Microbiol., 18, 503, 10.1111/1462-2920.13116
Rishworth, 2017, Peritidal stromatolites at the convergence of groundwater seepage and marine incursion: patterns of salinity, temperature and nutrient variability, J. Mar. Syst., 167, 68, 10.1016/j.jmarsys.2016.11.010
Rishworth, 2017, Patterns and drivers of benthic macrofaunal communities dwelling within extant peritidal stromatolites, Limnol. Oceanogr., 62, 2227, 10.1002/lno.10563
Rishworth, 2017, Non-reliance of metazoans on stromatolite-forming microbial mats as a food resource, Sci. Rep., 7, 10.1038/srep42614
Rishworth, 2018, Grazer responses to variable macroalgal resource conditions facilitate habitat structuring, R. Soc. Open Sci., 5, 10.1098/rsos.171428
Rishworth, 2019, Modern active microbialite-metazoan relationships in peritidal systems on the eastern cape coast of South Africa: ecological significance and implication for the palaeontological record, J. Afr. Earth Sci., 153, 1, 10.1016/j.jafrearsci.2019.02.013
Ruvindy, 2016, Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics, ISME J., 10, 183, 10.1038/ismej.2015.87
Saghaï, 2015, Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites, Front. Microbiol., 6, 1, 10.3389/fmicb.2015.00797
Smith, 2003, Living marine stromatolites at Kei River mouth, S. Afr. J. Sci., 99
Smith, 2005, Cape Morgan peritidal stromatolites: the origin of lamination, S. Afr. J. Sci., 101, 107
Smith, 2018, The extant shore platform stromatolite (SPS) facies association: a glimpse into the Archean?, Biogeosciences, 15, 2189, 10.5194/bg-15-2189-2018
Steppe, 2001, Diazotrophy in modern marine Bahamian stromatolites, Microb. Ecol., 41, 36, 10.1007/s002480000066
Summons, 1999, 2-Methylhopanoids: biomarkers for cyanobacteria and for oxygenic photosynthesis, Nature, 400, 554, 10.1038/23005
Visscher, 2005, Microbial mats as bioreactors: populations, processes, and products, Palaeogeogr. Palaeoclimatol. Palaeoecol., 219, 87, 10.1016/j.palaeo.2004.10.016
Visscher, 1998, Formation of lithified micritic laminae in modern marine stromatolites (Bahamas); the role of sulfur cycling, Am. Mineral., 83, 1482, 10.2138/am-1998-11-1236
Welschmeyer, 1994, Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments, Limnol. Oceanogr., 39, 1985, 10.4319/lo.1994.39.8.1985
Welsh, 2000, Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow, Mar. Ecol. Prog. Ser., 208, 65, 10.3354/meps208065
Weston, 2018, Benthic microalgal variability associated with peritidal stromatolite microhabitats along the south African coast, Aquat. Microb. Ecol.
Weston, 2018, Macroinvertebrate variability between microhabitats of peritidal stromatolites along the south African coast, Mar. Ecol. Prog. Ser., 605, 37, 10.3354/meps12741
Weston, 2019, Benthic microalgal variability associated with peritidal stromatolite microhabitats along the south African coast, Aquat. Microb. Ecol., 82, 253, 10.3354/ame01895
Wong, 2017, Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes, Sci. Rep., 7, 1, 10.1038/srep46160
Wong, 2018, Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes, ISME J., 12, 2619, 10.1038/s41396-018-0208-8