Nutrient sensing mechanism of short-chain fatty acids in mastitis control

Microbial Pathogenesis - Tập 170 - Trang 105692 - 2022
Ilyas Ali1,2, Ahmad Raza3, Muhammad Arslan Ahmad4, Lian Li2
1Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, 518060, China
2College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
3Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
4College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China

Tài liệu tham khảo

De Vliegher, 2012, Invited review: mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control, J. Dairy Sci., 95, 1025, 10.3168/jds.2010-4074 Thomsen, 2012, Characterization of the long-term immune response to vaccination against Mycobacterium avium subsp. paratuberculosis in Danish dairy cows, Vet. Immunol. Immunopathol., 145, 316, 10.1016/j.vetimm.2011.11.021 Aitken, 2011, Immunopathology of mastitis: insights into disease recognition and resolution, J. Mammary Gland Biol. Neoplasia, 16, 291, 10.1007/s10911-011-9230-4 Sordillo, 1997, Immunobiology of the mammary gland, J. Dairy Sci., 80, 1851, 10.3168/jds.S0022-0302(97)76121-6 Zadoks, 2014, Understanding the sources, transmission routes and prognoses for mastitis pathogens, WCDS Adv Dairy Technol, 26, 91 Ariznabarreta, 2002, Microbiological quality and somatic cell count of Ewe milk with special reference to staphylococci, J. Dairy Sci., 85, 1370, 10.3168/jds.S0022-0302(02)74203-3 Atalla, 2010, Antibody and cell-mediated immune responses to Staphylococcus aureus small colony variants and their parental strains associated with bovine mastitis, Dev. Comp. Immunol., 34, 1283, 10.1016/j.dci.2010.07.005 Contreras, 2011, Mastitis: comparative etiology and epidemiology, J. Mammary Gland Biol. Neoplasia, 16, 339, 10.1007/s10911-011-9234-0 Kehrli, 1994, Factors affecting milk somatic cells and their role in health of the bovine mammary gland, J. Dairy Sci., 77, 619, 10.3168/jds.S0022-0302(94)76992-7 Steeneveld, 2008, The influence of cow factors on the incidence of clinical mastitis in dairy cows, J. Dairy Sci., 91, 1391, 10.3168/jds.2007-0705 Bannerman, 2009, Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows, J. Anim. Sci., 87, 10, 10.2527/jas.2008-1187 Wellnitz, 2011, Lipopolysaccharide and lipoteichoic acid induce different immune responses in the bovine mammary gland, J. Dairy Sci., 94, 5405, 10.3168/jds.2010-3931 Medrano-Galarza, 2012, Behavioral changes in dairy cows with mastitis, J. Dairy Sci., 95, 6994, 10.3168/jds.2011-5247 Wang, 2017, vol. 8, 1108 Bergman, 1990, vol. 70, 567 Bergman, 1990, Energy contributions of volatile fatty acids from the gastrointestinal tract in various species, Physiol. Rev., 70, 567, 10.1152/physrev.1990.70.2.567 Raza, 2019, An update on carbohydrases: growth performance and intestinal health of poultry, Heliyon, 5, 10.1016/j.heliyon.2019.e01437 Yitbarek, 2018, Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens, FEMS Microbiol. Ecol., 94, fix165, 10.1093/femsec/fix165 Gigliucci, 2018, Metagenomic characterization of the human intestinal microbiota in fecal samples from STEC-infected patients, Front. Cell. Infect. Microbiol., 8, 25, 10.3389/fcimb.2018.00025 Schuijt, 2016, The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia, Gut, 65, 575, 10.1136/gutjnl-2015-309728 Jin, 2016, Rumen-derived lipopolysaccharide enhances the expression of lingual antimicrobial peptide in mammary glands of dairy cows fed a high-concentrate diet, BMC Vet. Res., 12, 128, 10.1186/s12917-016-0755-z Zhang, 2016, Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows, Oncotarget, 7, 9652, 10.18632/oncotarget.7371 Wang, 2017, Propionate protects against lipopolysaccharide-induced mastitis in mice by restoring blood–milk barrier disruption and suppressing inflammatory response, Front. Immunol., 8, 1108, 10.3389/fimmu.2017.01108 Guo, 2017, Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet, Oncotarget, 8 Wang, 2017, Butyrate protects against disruption of the blood‐milk barrier and moderates inflammatory responses in a model of mastitis induced by lipopolysaccharide, Br. J. Pharmacol., 174, 3811, 10.1111/bph.13976 Wang, 2017, vol. 174, 3811 Gonçalves, 2018, vol. 24, 558 Grabiec, 2018, vol. 44, 336 Parada Venegas, 2019, vol. 10, 277 Park, 2019, vol. 9, 1 Brown, 2003, vol. 278, 11312 Nilsson, 2003, vol. 303, 1047 Karaki, 2008, vol. 39, 135 Yonezawa, 2004, Existence of GPR40 functioning in a human breast cancer cell line, MCF-7, 314, 805 Cheng, 2010, Clinical presentations, laboratory results and outcomes of patients with Kikuchi's disease: emphasis on the association between recurrent Kikuchi's disease and autoimmune diseases, J. Microbiol. Immunol. Infect., 43, 366, 10.1016/S1684-1182(10)60058-8 Donohoe, 2011, The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon, Cell Metabol., 13, 517, 10.1016/j.cmet.2011.02.018 Gao, 2009, Butyrate improves insulin sensitivity and increases energy expenditure in mice, Diabetes, 58, 1509, 10.2337/db08-1637 Layden, 2013, Short chain fatty acids and their receptors: new metabolic targets, Transl. Res., 161, 131, 10.1016/j.trsl.2012.10.007 Shimazu, 2010, Acetate metabolism and aging: an emerging connection, Mechanisms of ageing and development, 131, 511, 10.1016/j.mad.2010.05.001 Markowiak-Kopeć, 2020, The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome, Nutrients, 12, 1107, 10.3390/nu12041107 Bedford, 2018, Implications of butyrate and its derivatives for gut health and animal production, Animal Nutrition, 4, 151, 10.1016/j.aninu.2017.08.010 Storm, 2010, Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows, J. Dairy Sci., 93, 4223, 10.3168/jds.2009-3002 Parada Venegas, 2019, Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases, Front. Immunol., 277, 10.3389/fimmu.2019.00277 Den Besten, 2013, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J. Lipid Res., 54, 2325, 10.1194/jlr.R036012 Al-Asmakh, 2015, vol. 3 Topping, 2001 Eswaran, 2013, vol. 108, 718 Roberts, 2010, vol. 59, 1331 Cummings, 1984, vol. 60, 811 Stephen, 1980, vol. 284, 283 Alva-Murillo, 2012, vol. 155, 324 Itavo, 2000, vol. 29, 1491 Barcenilla, 2000, vol. 66, 1654 Charrier, 2006, vol. 152, 179 Miller, 1996, vol. 62, 1589 Reichardt, 2014, vol. 8, 1323 Kim, 2014, Gut microbiota-derived short-chain fatty acids, T cells, and inflammation, 14, 277 Louis, 2014, vol. 12, 661 Duncan, 2002, vol. 68, 5186 Gareau, 2010, vol. 7, 503 Serpa, 2010, vol. 285, 39211 Meimandipour, 2010, vol. 51, 52 Pessione, 2012, Lactic acid bacteria contribution to gut microbiota complexity, lights and shadows, 2, 86 Abdin, 2008, vol. 2, 296 Amaretti, 2007, Kinetics and metabolism of Bifidobacterium adolescentis MB 239 growing on glucose, galactose, lactose, and galactooligosaccharides, 73, 3637 Salazar, 2011, vol. 144, 342 Sivieri, 2013, Lactobacillus acidophilus CRL 1014 improved “gut, health” in the SHIME® reactor, 13, 100 LeBlanc, 2017, vol. 16, 1 Santos, 2008, vol. 74, 3291 Reid, 2011, vol. 9, 27 Kalliomäki, 2001, vol. 357, 1076 Sokol, 2008, vol. 105, 16731 Braat, 2004, vol. 80, 1618 Di Giacinto, 2005, vol. 174, 3237 Pessi, 2000, vol. 30, 1804 Tang, 2009, Probiotics and prebiotics: immunological and clinical effects in allergic disease, 219 von der Weid, 2001, vol. 8, 695 Isolauri, 1995, vol. 13, 310 Fang, 2000, vol. 29, 47 Mullié, 2004, vol. 56, 791 Licciardi, 2010, vol. 2, 24 Caramia, 2008, Metchnikoff and the centenary of probiotics: an update of their use in gastroenteric pathology during the age of development, Minerva Pediatr., 60, 1417 D'Argenio, 1999, Short-chain fatty acid in the human colon, vol. 2, 149 Huda-Faujan, 2010, The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects, Open Biochem. J., 4, 53, 10.2174/1874091X01004010053 Roberfroid, 2010, Prebiotic effects: metabolic and health benefits, Br. J. Nutr., 104, S1, 10.1017/S0007114510003363 Sandin, 2009, Faecal short chain fatty acid pattern and allergy in early childhood, Acta Paediatr., 98, 823, 10.1111/j.1651-2227.2008.01215.x Thompson-Chagoyan, 2011, Faecal microbiota and short-chain fatty acid levels in faeces from infants with Cow‘s milk protein allergy, Int. Arch. Allergy Immunol., 156, 325, 10.1159/000323893 Maslowski, 2009, Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43, Nature, 461, 1282, 10.1038/nature08530 Musso, 2011, Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes, Annu. Rev. Med., 62, 361, 10.1146/annurev-med-012510-175505 Vijay-Kumar, 2010, Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5, Science, 328, 228, 10.1126/science.1179721 Stienstra, 2011, Inflammasome is a central player in the induction of obesity and insulin resistance, Proc. Natl. Acad. Sci. USA, 108, 15324, 10.1073/pnas.1100255108 Vandanmagsar, 2011, The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance, Nat. Med., 17, 179, 10.1038/nm.2279 Postler, 2017, vol. 26, 110 Al‐mosauwi, 2016, Differential protein abundance of a basolateral MCT1 transporter in the human gastrointestinal tract, Cell Biol. Int., 40, 1303, 10.1002/cbin.10684 Gill, 2005, Expression and membrane localization of MCT isoforms along the length of the human intestine, Am. J. Physiol. Cell Physiol., 289, C846, 10.1152/ajpcell.00112.2005 Iwanaga, 2006, Cellular expression of monocarboxylate transporters (MCT) in the digestive tract of the mouse, rat, and humans, with special reference to slc5a8, Biomed. Res., 27, 243, 10.2220/biomedres.27.243 Borthakur, 2010, The probiotic Lactobacillus plantarum counteracts TNF-α-induced downregulation of SMCT1 expression and function, Am. J. Physiol. Gastrointest. Liver Physiol., 299, G928, 10.1152/ajpgi.00279.2010 Norman, 2013, Water security assessment: integrating governance and freshwater indicators, Water Resour. Manag., 27, 535, 10.1007/s11269-012-0200-4 Borthakur, 2012, A novel nutrient sensing mechanism underlies substrate-induced regulation of monocarboxylate transporter-1, Am. J. Physiol. Gastrointest. Liver Physiol., 303, G1126, 10.1152/ajpgi.00308.2012 Li, 2003, SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers, Proc. Natl. Acad. Sci. USA, 100, 8412, 10.1073/pnas.1430846100 Miyauchi, 2004, Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na+-coupled transporter for short-chain fatty acids, J. Biol. Chem., 279, 13293, 10.1074/jbc.C400059200 Yanase, 2008, Cellular expression of a sodium-dependent monocarboxylate transporter (Slc5a8) and the MCT family in the mouse kidney, Histochem. Cell Biol., 130, 957, 10.1007/s00418-008-0490-z Halestrap, 1997, Lactate transport in heart in relation to myocardial ischemia, Am. J. Cardiol., 80, 17A, 10.1016/S0002-9149(97)00454-2 Tyagi, 2002, Mechanism of n-butyrate uptake in the human proximal colonic basolateral membranes, Am. J. Physiol. Gastrointest. Liver Physiol., 282, G676, 10.1152/ajpgi.00173.2000 Findeisen, 2013, Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis, Curr. Atherosclerosis Rep., 15, 319, 10.1007/s11883-013-0319-7 Kim, 2014, vol. 14, 277 Klasvogt, 2017, Air–liquid interface enhances oxidative phosphorylation in intestinal epithelial cell line IPEC-J2, Cell death discovery, 3, 1, 10.1038/cddiscovery.2017.1 Shimozono, 1997, Functional evidence for a monocarboxylate transporter (MCT) in strial marginal cells and molecular evidence for MCT1 and MCT2 in stria vascularis, Hear. Res., 114, 213, 10.1016/S0378-5955(97)00165-2 Yurchenko, 2006, Dealing with the family: CD147 interactions with cyclophilins, Immunology, 117, 301, 10.1111/j.1365-2567.2005.02316.x Bhutia, 2015, Short, but smart: SCFAs train T cells in the gut to fight autoimmunity in the brain, Immunity, 43, 629, 10.1016/j.immuni.2015.09.014 Eberle, 2014, Receptors for short-chain fatty acids in brush cells at the “gastric groove”, Front. Physiol., 5, 152, 10.3389/fphys.2014.00152 Brown, 2003, The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids, J. Biol. Chem., 278, 11312, 10.1074/jbc.M211609200 Taggart, 2005, 563 liaw C, chen R, richman J, connolly D, offermanns S, wright SD, and waters MG.(D)-beta-564 hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G, The Journal of 565 biological chemistry, 280, 566 Thangaraju, 2009, GPR109A is a G-protein–coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon, Cancer Res., 69, 2826, 10.1158/0008-5472.CAN-08-4466 Vinolo, 2011, Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils, J. Nutr. Biochem., 22, 849, 10.1016/j.jnutbio.2010.07.009 Halnes, 2017, Soluble fibre meal challenge reduces airway inflammation and expression of GPR43 and GPR41 in asthma, Nutrients, 9, 57, 10.3390/nu9010057 Masui, 2013, G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells, Inflamm. Bowel Dis., 19, 2848, 10.1097/01.MIB.0000435444.14860.ea Ohira, 2013, Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages, J. Atherosclerosis Thromb., 20, 425, 10.5551/jat.15065 Schaub, 2001, PUMA‐G, an IFN‐γ‐inducible gene in macrophages is a novel member of the seven transmembrane spanning receptor superfamily, Eur. J. Immunol., 31, 3714, 10.1002/1521-4141(200112)31:12<3714::AID-IMMU3714>3.0.CO;2-1 Singh, 2014, Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity, 40, 128, 10.1016/j.immuni.2013.12.007 Aoyama, 2010, Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways, Nutrition, 26, 653, 10.1016/j.nut.2009.07.006 Usami, 2008, Butyrate and trichostatin A attenuate nuclear factor κB activation and tumor necrosis factor α secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells, Nutr. Res. (N.Y.), 28, 321, 10.1016/j.nutres.2008.02.012 Zhang, 2015, vol. 10 Itoh, 2003, vol. 8, 449 Nguyen, 1998, vol. 3, 233 Stelwagen, 1997, vol. 273, R379 Sears, 2003, Mastitis, 19, xi Koch, 2009, vol. 1165, 220 Tsukita, 2000, vol. 915, 129 Edelblum, 2009, vol. 9, 715 Ramakrishna, 2009, vol. 30, 76 Vickers, 2017, Animal communication: when i'm calling you, will you answer too?, 27, R713 Mariño, 2017, vol. 18, 552 Braniste, 2014, vol. 6 Al-Asmakh, 2014, vol. 9 Marungruang, 2018, vol. 30 Inoue, 2014, Regulation of energy homeostasis by GPR41, Front. Endocrinol., 5, 81, 10.3389/fendo.2014.00081 Bugaut, 1987, vol. 86, 439 Havenaar, 2011, vol. 2, 103 Den Besten, 2013, 2325 den Besten, 2013 Yang, 2014, vol. 510, 152 Wells, 2011, vol. 108, 4607 Kehrli, 2001, Immunity in the mammary gland, 17, 495 Porcherie, 2016, vol. 196, 803 Herry, 2017, vol. 7, 1 Boffa, 1978, vol. 253, 3364 Candido, 1978, vol. 14, 105 Davie, 2003, vol. 133, 2485S Riggs, 1977, vol. 268, 462 Vidali, 1978, vol. 75, 2239 Zheng, C., January 2018. 10, 00099-00017. Shakespear, 2011, vol. 32, 335 Dekker, 2014, vol. 19, 654 Ziesche, 2013, vol. 41, 90 Kelly, 2003, vol. 9, 3578 Andrews, 2009, vol. 9, 292 Bhavsar, 2008, vol. 121, 580 Grabiec, 2008, Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our, HATs on?, 10, 1 Fantuzzi, 2006, vol. 176, 5015 Wei, 2017, vol. 107, 116 Silva, 2018, vol. 96, 5244 Chen, 2019, vol. 15, 267 Li, 2019, vol. 120, 2370 Miller, 1992, vol. 75, 1436 Ochoa-Zarzosa, 2009, vol. 47, 1 Xu, 2015, vol. 11, 52 Dai, 2017, vol. 65, 596 Chang, 2018, vol. 66, 2101