Nutrient sensing mechanism of short-chain fatty acids in mastitis control
Tài liệu tham khảo
De Vliegher, 2012, Invited review: mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control, J. Dairy Sci., 95, 1025, 10.3168/jds.2010-4074
Thomsen, 2012, Characterization of the long-term immune response to vaccination against Mycobacterium avium subsp. paratuberculosis in Danish dairy cows, Vet. Immunol. Immunopathol., 145, 316, 10.1016/j.vetimm.2011.11.021
Aitken, 2011, Immunopathology of mastitis: insights into disease recognition and resolution, J. Mammary Gland Biol. Neoplasia, 16, 291, 10.1007/s10911-011-9230-4
Sordillo, 1997, Immunobiology of the mammary gland, J. Dairy Sci., 80, 1851, 10.3168/jds.S0022-0302(97)76121-6
Zadoks, 2014, Understanding the sources, transmission routes and prognoses for mastitis pathogens, WCDS Adv Dairy Technol, 26, 91
Ariznabarreta, 2002, Microbiological quality and somatic cell count of Ewe milk with special reference to staphylococci, J. Dairy Sci., 85, 1370, 10.3168/jds.S0022-0302(02)74203-3
Atalla, 2010, Antibody and cell-mediated immune responses to Staphylococcus aureus small colony variants and their parental strains associated with bovine mastitis, Dev. Comp. Immunol., 34, 1283, 10.1016/j.dci.2010.07.005
Contreras, 2011, Mastitis: comparative etiology and epidemiology, J. Mammary Gland Biol. Neoplasia, 16, 339, 10.1007/s10911-011-9234-0
Kehrli, 1994, Factors affecting milk somatic cells and their role in health of the bovine mammary gland, J. Dairy Sci., 77, 619, 10.3168/jds.S0022-0302(94)76992-7
Steeneveld, 2008, The influence of cow factors on the incidence of clinical mastitis in dairy cows, J. Dairy Sci., 91, 1391, 10.3168/jds.2007-0705
Bannerman, 2009, Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows, J. Anim. Sci., 87, 10, 10.2527/jas.2008-1187
Wellnitz, 2011, Lipopolysaccharide and lipoteichoic acid induce different immune responses in the bovine mammary gland, J. Dairy Sci., 94, 5405, 10.3168/jds.2010-3931
Medrano-Galarza, 2012, Behavioral changes in dairy cows with mastitis, J. Dairy Sci., 95, 6994, 10.3168/jds.2011-5247
Wang, 2017, vol. 8, 1108
Bergman, 1990, vol. 70, 567
Bergman, 1990, Energy contributions of volatile fatty acids from the gastrointestinal tract in various species, Physiol. Rev., 70, 567, 10.1152/physrev.1990.70.2.567
Raza, 2019, An update on carbohydrases: growth performance and intestinal health of poultry, Heliyon, 5, 10.1016/j.heliyon.2019.e01437
Yitbarek, 2018, Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens, FEMS Microbiol. Ecol., 94, fix165, 10.1093/femsec/fix165
Gigliucci, 2018, Metagenomic characterization of the human intestinal microbiota in fecal samples from STEC-infected patients, Front. Cell. Infect. Microbiol., 8, 25, 10.3389/fcimb.2018.00025
Schuijt, 2016, The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia, Gut, 65, 575, 10.1136/gutjnl-2015-309728
Jin, 2016, Rumen-derived lipopolysaccharide enhances the expression of lingual antimicrobial peptide in mammary glands of dairy cows fed a high-concentrate diet, BMC Vet. Res., 12, 128, 10.1186/s12917-016-0755-z
Zhang, 2016, Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows, Oncotarget, 7, 9652, 10.18632/oncotarget.7371
Wang, 2017, Propionate protects against lipopolysaccharide-induced mastitis in mice by restoring blood–milk barrier disruption and suppressing inflammatory response, Front. Immunol., 8, 1108, 10.3389/fimmu.2017.01108
Guo, 2017, Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet, Oncotarget, 8
Wang, 2017, Butyrate protects against disruption of the blood‐milk barrier and moderates inflammatory responses in a model of mastitis induced by lipopolysaccharide, Br. J. Pharmacol., 174, 3811, 10.1111/bph.13976
Wang, 2017, vol. 174, 3811
Gonçalves, 2018, vol. 24, 558
Grabiec, 2018, vol. 44, 336
Parada Venegas, 2019, vol. 10, 277
Park, 2019, vol. 9, 1
Brown, 2003, vol. 278, 11312
Nilsson, 2003, vol. 303, 1047
Karaki, 2008, vol. 39, 135
Yonezawa, 2004, Existence of GPR40 functioning in a human breast cancer cell line, MCF-7, 314, 805
Cheng, 2010, Clinical presentations, laboratory results and outcomes of patients with Kikuchi's disease: emphasis on the association between recurrent Kikuchi's disease and autoimmune diseases, J. Microbiol. Immunol. Infect., 43, 366, 10.1016/S1684-1182(10)60058-8
Donohoe, 2011, The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon, Cell Metabol., 13, 517, 10.1016/j.cmet.2011.02.018
Gao, 2009, Butyrate improves insulin sensitivity and increases energy expenditure in mice, Diabetes, 58, 1509, 10.2337/db08-1637
Layden, 2013, Short chain fatty acids and their receptors: new metabolic targets, Transl. Res., 161, 131, 10.1016/j.trsl.2012.10.007
Shimazu, 2010, Acetate metabolism and aging: an emerging connection, Mechanisms of ageing and development, 131, 511, 10.1016/j.mad.2010.05.001
Markowiak-Kopeć, 2020, The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome, Nutrients, 12, 1107, 10.3390/nu12041107
Bedford, 2018, Implications of butyrate and its derivatives for gut health and animal production, Animal Nutrition, 4, 151, 10.1016/j.aninu.2017.08.010
Storm, 2010, Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows, J. Dairy Sci., 93, 4223, 10.3168/jds.2009-3002
Parada Venegas, 2019, Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases, Front. Immunol., 277, 10.3389/fimmu.2019.00277
Den Besten, 2013, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J. Lipid Res., 54, 2325, 10.1194/jlr.R036012
Al-Asmakh, 2015, vol. 3
Topping, 2001
Eswaran, 2013, vol. 108, 718
Roberts, 2010, vol. 59, 1331
Cummings, 1984, vol. 60, 811
Stephen, 1980, vol. 284, 283
Alva-Murillo, 2012, vol. 155, 324
Itavo, 2000, vol. 29, 1491
Barcenilla, 2000, vol. 66, 1654
Charrier, 2006, vol. 152, 179
Miller, 1996, vol. 62, 1589
Reichardt, 2014, vol. 8, 1323
Kim, 2014, Gut microbiota-derived short-chain fatty acids, T cells, and inflammation, 14, 277
Louis, 2014, vol. 12, 661
Duncan, 2002, vol. 68, 5186
Gareau, 2010, vol. 7, 503
Serpa, 2010, vol. 285, 39211
Meimandipour, 2010, vol. 51, 52
Pessione, 2012, Lactic acid bacteria contribution to gut microbiota complexity, lights and shadows, 2, 86
Abdin, 2008, vol. 2, 296
Amaretti, 2007, Kinetics and metabolism of Bifidobacterium adolescentis MB 239 growing on glucose, galactose, lactose, and galactooligosaccharides, 73, 3637
Salazar, 2011, vol. 144, 342
Sivieri, 2013, Lactobacillus acidophilus CRL 1014 improved “gut, health” in the SHIME® reactor, 13, 100
LeBlanc, 2017, vol. 16, 1
Santos, 2008, vol. 74, 3291
Reid, 2011, vol. 9, 27
Kalliomäki, 2001, vol. 357, 1076
Sokol, 2008, vol. 105, 16731
Braat, 2004, vol. 80, 1618
Di Giacinto, 2005, vol. 174, 3237
Pessi, 2000, vol. 30, 1804
Tang, 2009, Probiotics and prebiotics: immunological and clinical effects in allergic disease, 219
von der Weid, 2001, vol. 8, 695
Isolauri, 1995, vol. 13, 310
Fang, 2000, vol. 29, 47
Mullié, 2004, vol. 56, 791
Licciardi, 2010, vol. 2, 24
Caramia, 2008, Metchnikoff and the centenary of probiotics: an update of their use in gastroenteric pathology during the age of development, Minerva Pediatr., 60, 1417
D'Argenio, 1999, Short-chain fatty acid in the human colon, vol. 2, 149
Huda-Faujan, 2010, The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects, Open Biochem. J., 4, 53, 10.2174/1874091X01004010053
Roberfroid, 2010, Prebiotic effects: metabolic and health benefits, Br. J. Nutr., 104, S1, 10.1017/S0007114510003363
Sandin, 2009, Faecal short chain fatty acid pattern and allergy in early childhood, Acta Paediatr., 98, 823, 10.1111/j.1651-2227.2008.01215.x
Thompson-Chagoyan, 2011, Faecal microbiota and short-chain fatty acid levels in faeces from infants with Cow‘s milk protein allergy, Int. Arch. Allergy Immunol., 156, 325, 10.1159/000323893
Maslowski, 2009, Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43, Nature, 461, 1282, 10.1038/nature08530
Musso, 2011, Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes, Annu. Rev. Med., 62, 361, 10.1146/annurev-med-012510-175505
Vijay-Kumar, 2010, Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5, Science, 328, 228, 10.1126/science.1179721
Stienstra, 2011, Inflammasome is a central player in the induction of obesity and insulin resistance, Proc. Natl. Acad. Sci. USA, 108, 15324, 10.1073/pnas.1100255108
Vandanmagsar, 2011, The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance, Nat. Med., 17, 179, 10.1038/nm.2279
Postler, 2017, vol. 26, 110
Al‐mosauwi, 2016, Differential protein abundance of a basolateral MCT1 transporter in the human gastrointestinal tract, Cell Biol. Int., 40, 1303, 10.1002/cbin.10684
Gill, 2005, Expression and membrane localization of MCT isoforms along the length of the human intestine, Am. J. Physiol. Cell Physiol., 289, C846, 10.1152/ajpcell.00112.2005
Iwanaga, 2006, Cellular expression of monocarboxylate transporters (MCT) in the digestive tract of the mouse, rat, and humans, with special reference to slc5a8, Biomed. Res., 27, 243, 10.2220/biomedres.27.243
Borthakur, 2010, The probiotic Lactobacillus plantarum counteracts TNF-α-induced downregulation of SMCT1 expression and function, Am. J. Physiol. Gastrointest. Liver Physiol., 299, G928, 10.1152/ajpgi.00279.2010
Norman, 2013, Water security assessment: integrating governance and freshwater indicators, Water Resour. Manag., 27, 535, 10.1007/s11269-012-0200-4
Borthakur, 2012, A novel nutrient sensing mechanism underlies substrate-induced regulation of monocarboxylate transporter-1, Am. J. Physiol. Gastrointest. Liver Physiol., 303, G1126, 10.1152/ajpgi.00308.2012
Li, 2003, SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers, Proc. Natl. Acad. Sci. USA, 100, 8412, 10.1073/pnas.1430846100
Miyauchi, 2004, Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na+-coupled transporter for short-chain fatty acids, J. Biol. Chem., 279, 13293, 10.1074/jbc.C400059200
Yanase, 2008, Cellular expression of a sodium-dependent monocarboxylate transporter (Slc5a8) and the MCT family in the mouse kidney, Histochem. Cell Biol., 130, 957, 10.1007/s00418-008-0490-z
Halestrap, 1997, Lactate transport in heart in relation to myocardial ischemia, Am. J. Cardiol., 80, 17A, 10.1016/S0002-9149(97)00454-2
Tyagi, 2002, Mechanism of n-butyrate uptake in the human proximal colonic basolateral membranes, Am. J. Physiol. Gastrointest. Liver Physiol., 282, G676, 10.1152/ajpgi.00173.2000
Findeisen, 2013, Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis, Curr. Atherosclerosis Rep., 15, 319, 10.1007/s11883-013-0319-7
Kim, 2014, vol. 14, 277
Klasvogt, 2017, Air–liquid interface enhances oxidative phosphorylation in intestinal epithelial cell line IPEC-J2, Cell death discovery, 3, 1, 10.1038/cddiscovery.2017.1
Shimozono, 1997, Functional evidence for a monocarboxylate transporter (MCT) in strial marginal cells and molecular evidence for MCT1 and MCT2 in stria vascularis, Hear. Res., 114, 213, 10.1016/S0378-5955(97)00165-2
Yurchenko, 2006, Dealing with the family: CD147 interactions with cyclophilins, Immunology, 117, 301, 10.1111/j.1365-2567.2005.02316.x
Bhutia, 2015, Short, but smart: SCFAs train T cells in the gut to fight autoimmunity in the brain, Immunity, 43, 629, 10.1016/j.immuni.2015.09.014
Eberle, 2014, Receptors for short-chain fatty acids in brush cells at the “gastric groove”, Front. Physiol., 5, 152, 10.3389/fphys.2014.00152
Brown, 2003, The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids, J. Biol. Chem., 278, 11312, 10.1074/jbc.M211609200
Taggart, 2005, 563 liaw C, chen R, richman J, connolly D, offermanns S, wright SD, and waters MG.(D)-beta-564 hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G, The Journal of 565 biological chemistry, 280, 566
Thangaraju, 2009, GPR109A is a G-protein–coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon, Cancer Res., 69, 2826, 10.1158/0008-5472.CAN-08-4466
Vinolo, 2011, Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils, J. Nutr. Biochem., 22, 849, 10.1016/j.jnutbio.2010.07.009
Halnes, 2017, Soluble fibre meal challenge reduces airway inflammation and expression of GPR43 and GPR41 in asthma, Nutrients, 9, 57, 10.3390/nu9010057
Masui, 2013, G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells, Inflamm. Bowel Dis., 19, 2848, 10.1097/01.MIB.0000435444.14860.ea
Ohira, 2013, Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages, J. Atherosclerosis Thromb., 20, 425, 10.5551/jat.15065
Schaub, 2001, PUMA‐G, an IFN‐γ‐inducible gene in macrophages is a novel member of the seven transmembrane spanning receptor superfamily, Eur. J. Immunol., 31, 3714, 10.1002/1521-4141(200112)31:12<3714::AID-IMMU3714>3.0.CO;2-1
Singh, 2014, Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity, 40, 128, 10.1016/j.immuni.2013.12.007
Aoyama, 2010, Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways, Nutrition, 26, 653, 10.1016/j.nut.2009.07.006
Usami, 2008, Butyrate and trichostatin A attenuate nuclear factor κB activation and tumor necrosis factor α secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells, Nutr. Res. (N.Y.), 28, 321, 10.1016/j.nutres.2008.02.012
Zhang, 2015, vol. 10
Itoh, 2003, vol. 8, 449
Nguyen, 1998, vol. 3, 233
Stelwagen, 1997, vol. 273, R379
Sears, 2003, Mastitis, 19, xi
Koch, 2009, vol. 1165, 220
Tsukita, 2000, vol. 915, 129
Edelblum, 2009, vol. 9, 715
Ramakrishna, 2009, vol. 30, 76
Vickers, 2017, Animal communication: when i'm calling you, will you answer too?, 27, R713
Mariño, 2017, vol. 18, 552
Braniste, 2014, vol. 6
Al-Asmakh, 2014, vol. 9
Marungruang, 2018, vol. 30
Inoue, 2014, Regulation of energy homeostasis by GPR41, Front. Endocrinol., 5, 81, 10.3389/fendo.2014.00081
Bugaut, 1987, vol. 86, 439
Havenaar, 2011, vol. 2, 103
Den Besten, 2013, 2325
den Besten, 2013
Yang, 2014, vol. 510, 152
Wells, 2011, vol. 108, 4607
Kehrli, 2001, Immunity in the mammary gland, 17, 495
Porcherie, 2016, vol. 196, 803
Herry, 2017, vol. 7, 1
Boffa, 1978, vol. 253, 3364
Candido, 1978, vol. 14, 105
Davie, 2003, vol. 133, 2485S
Riggs, 1977, vol. 268, 462
Vidali, 1978, vol. 75, 2239
Zheng, C., January 2018. 10, 00099-00017.
Shakespear, 2011, vol. 32, 335
Dekker, 2014, vol. 19, 654
Ziesche, 2013, vol. 41, 90
Kelly, 2003, vol. 9, 3578
Andrews, 2009, vol. 9, 292
Bhavsar, 2008, vol. 121, 580
Grabiec, 2008, Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our, HATs on?, 10, 1
Fantuzzi, 2006, vol. 176, 5015
Wei, 2017, vol. 107, 116
Silva, 2018, vol. 96, 5244
Chen, 2019, vol. 15, 267
Li, 2019, vol. 120, 2370
Miller, 1992, vol. 75, 1436
Ochoa-Zarzosa, 2009, vol. 47, 1
Xu, 2015, vol. 11, 52
Dai, 2017, vol. 65, 596
Chang, 2018, vol. 66, 2101