Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil

Ana Sofia P. S. Reboleira1, Kasun H. Bodawatta1, Nynne M. R. Ravn2, Stein‐Erik Lauritzen3, Rannveig Øvrevik Skoglund4, Michael Poulsen5, Anders Michelsen6, Knud A. Jønsson2
1Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749–016, Lisbon, Portugal
2Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
3Department of Earth Science, University of Bergen, Allegt. 41, 5007, Bergen, Norway
4Department of Geography, University of Bergen, Fosswinckels gt. 6, 5007, Bergen, Norway
5Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
6Section for Terrestrial Ecology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark

Tóm tắt

Abstract Background Subarctic regions are particularly vulnerable to climate change, yet little is known about nutrient availability and biodiversity of their cave ecosystems. Such knowledge is crucial for predicting the vulnerability of these ecosystems to consequences of climate change. Thus, to improve our understanding of life in these habitats, we characterized environmental variables, as well as bacterial and invertebrate communities of six subarctic caves in Northern Norway. Results Only a minuscule diversity of surface-adapted invertebrates were found in these caves. However, the bacterial communities in caves were compositionally different, more diverse and more complex than the nutrient-richer surface soil. Cave soil microbiomes were less variable between caves than between surface communities in the same area, suggesting that the stable cave environments with tougher conditions drive the uniform microbial communities. We also observed only a small proportion of cave bacterial genera originating from the surface, indicating unique cave-adapted microbial communities. Increased diversity within caves may stem from higher niche specialization and levels of interdependencies for nutrient cycling among bacterial taxa in these oligotrophic environments. Conclusions Taken together this suggest that environmental changes, e.g., faster melting of snow as a result of global warming that could alter nutrient influx, can have a detrimental impact on interactions and dependencies of these complex communities. This comparative exploration of cave and surface microbiomes also lays the foundation to further investigate the long-term environmental variables that shape the biodiversity of these vulnerable ecosystems.

Từ khóa


Tài liệu tham khảo

Ummenhofer CC, Meehl GA. Extreme weather and climate events with ecological relevance: a review. Philos Trans R Soc Lond B Biol Sci. 2017. https://doi.org/10.1098/rstb.2016.0135.

Maxwell B. Arctic climate: potential for change under global warming. In: Chapin FS, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, editors. Arctic ecosystems in a changing climate: an ecophysiological perspective. San Diego: Academic Press Inc.; 1992.

Pi K, Bieroza M, Brouchkov A, Chen W, Dufour LJP, Gongalsky KB, et al. The cold region critical zone in transition: responses to climate warming and land use change. Annu Rev Environ Resour. 2021;46:11.1-.24. https://doi.org/10.1146/annurev-environ-012220-125703.

Castaño-Sánchez A, Hose GC, Reboleira A. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: a review. Chemosphere. 2020;244: 125422. https://doi.org/10.1016/j.chemosphere.2019.125422.

Jones DS, Macalady JL. The snotty and the stringy: energy for subsurface life in caves. In: Hurst C, editor. Their world: a diversity of microbial environments. Cham: Springer; 2016.

Simon KS, Benfield EF, Macko SA. Food web structure and the role of epilithic biofilms in cave streams. Ecology. 2003;84:2395–406.

Simon KS, Pipan T, Culver DC. A conceptual model of the flow and distribution of organic carbon in caves. J Cave Karst Stud. 2007;69:279–84.

Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE. 2012;7: e34953. https://doi.org/10.1371/journal.pone.0034953.

Mammola S, Cardoso P, Culver DC, Deharveng L, Ferreira RL, Fišer C, et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience. 2019;69(8):641–50. https://doi.org/10.1093/biosci/biz064.

Zagmajster M, Malard F, Eme D, Culver DC. Subterranean biodiversity patterns from global to regional scales. In: Moldovan OT, Kováč L, Halse S, editors. Cave Ecology. Cham: Springer; 2018. p. 195–227.

Tetu SG, Breakwell K, Elbourne LD, Holmes AJ, Gillings MR, Paulsen IT. Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME J. 2013;7(6):1227–36. https://doi.org/10.1038/ismej.2013.14.

Banks ED, Taylor NM, Gulley J, Lubbers BR, Giarrizzo JG, Bullen HA, et al. Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiol J. 2010;27(5):444–54.

Barton HA, Northup DE. Geomicrobiology in cave environments: Past, current and future perspectives. J Cave Karst Stud. 2007;69:163–78.

Cuezva S, Fernandez-Cortes A, Porca E, Pasic L, Jurado V, Hernandez-Marine M, et al. The biogeochemical role of Actinobacteria in Altamira Cave. Spain FEMS Microbiol Ecol. 2012;81(1):281–90. https://doi.org/10.1111/j.1574-6941.2012.01391.x.

Gonzalez-Pimentel JL, Miller AZ, Jurado V, Laiz L, Pereira MFC, Saiz-Jimenez C. Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by metabolically active Actinobacteria. Sci Rep. 2018;8(1):1944. https://doi.org/10.1038/s41598-018-20393-2.

Macalady JL, Dattagupta S, Schaperdoth I, Jones DS, Druschel GK, Eastman D. Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J. 2008;2(6):590–601. https://doi.org/10.1038/ismej.2008.25.

Northup DE, Barns SM, Yu LE, Spilde MN, Schelble RT, Dano KE, et al. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ Microbiol. 2003;5(11):1071–86. https://doi.org/10.1046/j.1462-2920.2003.00500.x.

Paula CCP, Bichuette ME, Seleghim MHR. Nutrient availability in tropical caves influences the dynamics of microbial biomass. Microbiologyopen. 2020;9(7): e1044. https://doi.org/10.1002/mbo3.1044.

Riquelme C, Marshall Hathaway JJ, Enes Dapkevicius Mde L, Miller AZ, Kooser A, Northup DE, et al. Actinobacterial diversity in volcanic caves and associated geomicrobiological interactions. Front Microbiol. 2015;6:1342. https://doi.org/10.3389/fmicb.2015.01342.

Natvig LR. Ravnaagrotten. In: Den Norske Turistforening, Årbok. Oslo, Norway: Den Norske Turistforenin; 1916. p. 65–75.

Natvig LR. Hammernesgrottene ved Langvandet. In: Årbok DNT, editor. Oslo. Norway: Den Norske Tursitforenings; 1923. p. 170–83.

Høeg OA. Cyanophyceae and bacteria in calcareous sediments in the interior of limestone caves in Nord-Rana. Norway Nyt Magasin for Naturvidenskaperne. 1946;85:99–104.

Kim HM, Jung JY, Yergeau E, Hwang CY, Hinzman L, Nam S, et al. Bacterial community structure and soil properties of a subarctic tundra soil in Council. Alaska FEMS Microbiol Ecol. 2014;89(2):465–75. https://doi.org/10.1111/1574-6941.12362.

Ortiz M, Legatzki A, Neilson JW, Fryslie B, Nelson WM, Wing RA, et al. Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME J. 2014;8(2):478–91. https://doi.org/10.1038/ismej.2013.159.

Barton HA, Giarrizzo JG, Suarez P, Robertson CE, Broering MJ, Banks ED, et al. Microbial diversity in a Venezuelan orthoquartzite cave is dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I.1.c. Front Microbiol. 2014;5:615. https://doi.org/10.3389/fmicb.2014.00615.

Yun Y, Wang H, Man B, Xiang X, Zhou J, Qiu X, et al. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front Microbiol. 2016;7:1955. https://doi.org/10.3389/fmicb.2016.01955.

Lauritzen SE. Marble Stripe karst of the Scandinavian Caledonides: An end-member in the contact karst spectrum. Acta Carsologica. 2001;30(2):47–79.

Faulkner T, Newton G. Caves of Bjørkåsen and Elgfjell, South Nordland Norway. Cave Science. 1990;17:107–22.

Lauritzen SE. Ranagrottenes fortid, nåtid og framtid. In: Årbok for Rana. 2019. p. 176–97.

Bjune AE, Birks HJB. Holocene vegetation dynamics and inferred climate changes at Svanåvatnet, Mo i Rana, northern Norway. Boreas. 2008;37(1):146–56.

Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil-nitrogen—a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 1985;17(6):837–42.

Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19(6):703–7.

Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem. 1990;22:1167–9.

Clemmensen KE, Sorensen PL, Michelsen A, Jonasson S, Strom L. Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi. Oecologia. 2008;155(4):771–83. https://doi.org/10.1007/s00442-008-0962-9.

Ravn NMR, Elberling B, Michelsen A. The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems. Plant Soil. 2017;419:201–18. https://doi.org/10.1007/s11104-017-3322-x.

Bodawatta KH, Puzejova K, Sam K, Poulsen M, Jønsson KA. Cloacal swabs and alcohol bird specimens are good proxies for compositional analyses of gut microbial communities of Great tits (Parus major). BMC Anim Microbiome. 2020. https://doi.org/10.1186/s42523-020-00026-8.

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7. https://doi.org/10.1038/s41587-019-0209-9.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3. https://doi.org/10.1038/nmeth.3869.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):D590–6. https://doi.org/10.1093/nar/gks1219.

McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0061217.

R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2019). Accessed April 2021.

Ogle PH, Wheeler P, Dinno A: FSA: Fisheries Stock Analysis. R package version 0.8.30. https://github.com/fishR-Core-Team/FSA. Accessed April 2021

Wickham H, François R, Henry L, Müller K. dplyr: A grammar of data manipulation. https://CRAN.R-project.org/package=dplyr (2019). Accessed April 2021.

Lahti L, Shetty S: Tools for microbiome analysis in R. Version 2.1.24. 2017. http://microbiome.github.com/microbiome. Accessed April 2021.

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5–4. https://CRAN.R-project.org/package=vegan (2019). Accessed April 2021.

Arbizu MP. pairwiseAdonis: Pairwise multilevel comparison using adonis. https://github.com/pmartinezarbizu/pairwiseAdonis (2019). Accessed April 2021.

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.

Liu C, Cui Y, Li X, Yao M. Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol. 2021. https://doi.org/10.1093/femsec/fiaa255.

Kurtz ZD, Muller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11(5): e1004226. https://doi.org/10.1371/journal.pcbi.1004226.

Müller CL, Bonneau RA, Kurtz ZD: Generalized Stability Approach for Regularized Graphical Models. In. Edited by University C. arXiv; 2016. arXiv:1605.07072.

Liu H, Roeder K, Wasserman L. Stability approach to regularization selection (StARS) for high dimensional graphical models. Adv Neural Inf Process Syst. 2010;24(2):1432–40.

Csardi G, Nepusz T. The igraph software package for complex network research. Int J Complex Syst. 2006;1695:1–6.

Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8(9):761–3. https://doi.org/10.1038/nmeth.1650.

Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6(9):1653–64. https://doi.org/10.1038/ismej.2012.22.

Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26(11):1463–4. https://doi.org/10.1093/bioinformatics/btq166.

Chai Y, Yue M, Liu X, Guo Y, Wang M, Xu J, et al. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process. Sci Rep. 2016;6:27087. https://doi.org/10.1038/srep27087.

Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME. Environmental stress destabilizes microbial networks. ISME J. 2021;15(6):1722–34. https://doi.org/10.1038/s41396-020-00882-x.

Mammola S, Arnedo MA, Fišer C, Cardoso P, Dejanaz AJ, Isaia M. Environmental filtering and convergent evolution determine the ecological specialization of subterranean spiders. Funct Ecol. 2020;34(5):1064–77.

Ravn NMR, Michelsen A, Reboleira ASPS. Decomposition of organic matter in caves. Front Ecol Evol. 2020;8: 554651. https://doi.org/10.3389/fevo.2020.554651.

Venarsky MP, Huntsman BM. Food webs in caves. In: Moldovan O, Kováč Ľ, Halse S, editors. Cave ecology ecological studies (Analysis and Synthesis). Cham: Springer; 2019. p. 309–28.

Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol. 2010;12(11):2998–3006.

Dukunde A, Schneider D, Schmidt M, Veldkamp E, Daniel R. Tree species shape soil bacterial community structure and function in temperate deciduous forests. Front Microbiol. 2019;10:1519. https://doi.org/10.3389/fmicb.2019.01519.

Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EA. The effect of nutrient deposition on bacterialcommunities in Arctic tundra soil. Environ Microbiol. 2010;12(7):1842–2854.

Cernava T, Erlacher A, Aschenbrenner IA, Krug L, Lassek C, Riedel K, et al. Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome. 2017;5:82. https://doi.org/10.1186/s40168-017-0303-5.

Tveit A, Schwacke R, Svenning MM, Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 2013;7(2):299–311. https://doi.org/10.1038/ismej.2012.99.

Schellenberger S, Kolb S, Drake HL. Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen. Environ Microbiol. 2010;12(4):845–61. https://doi.org/10.1111/j.1462-2920.2009.02128.x.

Weber CF, King GM. Distribution and diversity of carbon monoxide-oxidizing bacteria and bulk bacterial communities across a succession gradient on a Hawaiian volcanic deposit. Environ Microbiol. 2010;12(7):1855–67. https://doi.org/10.1111/j.1462-2920.2010.02190.x.

Roland CA, Stehn SE, Schmidt JH. Species richness of multiple functional groups peaks in alpine tundra in subarctic Alaska. Ecosphere. 2017;8(16): e01848.

Turrini P, Tescari M, Visaggio D, Pirolo M, Lugli GA, Ventura M, et al. The microbial community of a biofilm lining the wall of a pristine cave in Western New Guinea. Microbiol Res. 2020;241: 126584. https://doi.org/10.1016/j.micres.2020.126584.

Lavoie KH, Winter AS, Read KJ, Hughes EM, Spilde MN, Northup DE. Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA. PLoS ONE. 2017;12(2): e0169339. https://doi.org/10.1371/journal.pone.0169339.

Wiseschart A, Mhuantong W, Tangphatsornruang S, Chantasingh D, Pootanakit K. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiol. 2019;19(1):144. https://doi.org/10.1186/s12866-019-1521-8.

Wu Y, Tan L, Liu W, Wang B, Wang J, Cai Y, et al. Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China. Front Microbiol. 2015;6:244. https://doi.org/10.3389/fmicb.2015.00244.

Sarbu SM, Kane TC, Kinkle BK. A chemoautotrophically based cave ecosystem. Science. 1996;272(5270):1953–5. https://doi.org/10.1126/science.272.5270.1953.

Oved T, Shaviv A, Goldrath T, Mandelbaum RT, Minz D. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol. 2001;67(8):3426–33. https://doi.org/10.1128/AEM.67.8.3426-3433.2001.

Dedysh SN, Kulichevskaya IS, Beletsky AV, Ivanova AA, Rijpstra WIC, Damste JSS, et al. Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatales ord. nov. and Isosphaerales ord. nov. Syst Appl Microbiol. 2020;43(1):126050. https://doi.org/10.1016/j.syapm.2019.126050.

Stott MB, Carere CR, Greening C, Morgan XC. Pyrinomonas. In: Whitman WB, editor. Bergey’s Manual of Systematics of Archaea and Bacteria. Hoboken: John Wiley & Sons, Inc.; 2018.

Pascual J, Huber KJ, Foesel BU, Overmann J. Tellurimicrobium. In: Whitman WB, editor. Bergey’s manual of systematics of archaea and bacteria. Hoboken: John Wiley & Sons, Inc.; 2017.

Pascual J, Huber KJ, Overmann J. Arenimicrobium. In: Whitman WB, editor. Bergey’s Manual of Systematics of Archaea and Bacteria. Hoboken: John Wiley & Sons, Inc.; 2018.

Lehtovirta-Morley LE. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. Fems Microbiol Lett. 2018. https://doi.org/10.1093/femsle/fny058.

Desai MS, Assig K, Dattagupta S. Nitrogen fixation in distinct microbial niches within a chemoautotrophy-driven cave ecosystem. ISME J. 2013;7(12):2411–23. https://doi.org/10.1038/ismej.2013.126.

Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, et al. Gemmatimonas aurantiaca gen. nov., sp. Nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. Nov. Int J Syst Evol Microbiol. 2003;53(4):1155–63. https://doi.org/10.1099/ijs.0.02520-0.

Hutchinson GE. The paradox of the plankton. Am Nat. 1961;95(882):137–45.

Wilson JB. Mechanisms of species coexistence: Twelve explanations for Hutchinson’s ‘Paradox of the plankton’: evidence from New Zealand plant communities. N Z J Ecol. 1990;13(1):17–42.

Hershey OS, Kallmeyer J, Wallace A, Barton MD, Barton HA. High microbial diversity despite extremely low biomass in a deep karst aquifer. Front Microbiol. 2018;9:2823. https://doi.org/10.3389/fmicb.2018.02823.

Adam D, Maciejewska M, Naome A, Martinet L, Coppieters W, Karim L, et al. Isolation, characterization, and antibacterial activity of hard-to-culture actinobacteria from cave moonmilk deposits. Antibiotics (Basel). 2018. https://doi.org/10.3390/antibiotics7020028.