Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự giàu dưỡng chất trong nước ảnh hưởng nhiều hơn trong lá đến quá trình phân hủy tán cây vi sinh vật thủy sinh
Tóm tắt
Sự giàu dưỡng chất của đất và nước sẽ gia tăng trong tương lai và có tiềm năng làm thay đổi các quá trình sinh thái cơ bản, chẳng hạn như sự phân hủy tán cây. Chúng tôi đã kiểm tra các tác động trực tiếp (thông qua sự giàu dưỡng chất trong nước) và gián tiếp (thông qua sự thay đổi trong hóa học của lá) của sự giàu dưỡng chất lên hoạt động vi sinh vật và khả năng phân hủy của lá cây sồi Quercus robur L. trong các microcosm phòng thí nghiệm mô phỏng môi trường suối. Những chiếc lá già của cây sồi trồng không có và có phân bón đã được ủ trong các điều kiện nước có nồng độ dưỡng chất (nitơ (N) và photpho (P)) trung bình và cao trong 60 ngày. Việc bón phân cho đất đã dẫn đến sự gia tăng nồng độ N trong lá (gấp 3.4 lần) và trong tán cây (gấp 2.3 lần). Nồng độ dưỡng chất hòa tan trong nước tăng đã kích thích hoạt động vi sinh vật (hấp thu N, hô hấp vi sinh vật, tích tụ sinh khối nấm và sản xuất bào tử của nấm hyphomycetes thủy sinh) điều này đã dẫn đến việc tăng tốc độ phân hủy tán cây (gấp 2.1 lần đối với những cây không bón phân và gấp 1.6 lần đối với cây có bón phân). Lá từ các cây có bón phân có hoạt động vi sinh vật và tỷ lệ phân hủy cao hơn so với lá từ các cây không bón phân chỉ ở mức độ dưỡng chất hòa tan thấp. Khi nồng độ dưỡng chất tán cây và nước đều tăng, hoạt động vi sinh vật và phân hủy lá được kích thích, nhưng các tác động là cộng gộp và tác động trực tiếp từ sự gia tăng nồng độ dưỡng chất hòa tan mạnh hơn so với những tác động trung gian từ sự gia tăng nồng độ N trong tán cây (tác động gián tiếp). Kết quả của chúng tôi gợi ý rằng sự gia tăng trong sự sẵn có dưỡng chất trong nước (trong khoảng mà nghiên cứu này sử dụng) có thể đóng vai trò kiểm soát mạnh mẽ hơn lên hoạt động vi sinh vật và phân hủy tán cây hơn là sự giàu dưỡng chất trong tán cây.
Từ khóa
#dưỡng chất #vi sinh vật #phân hủy tán cây #Quercus robur #nồng độ dưỡng chất hòa tanTài liệu tham khảo
Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608. doi:10.2307/2261481
APHA (American Public Health Association) (1995) Standard methods for the examination of water and wastewater, 20th edn. APHA, Washington, DC
Ardón M, Pringle CM, Eggert SL (2009) Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry. J N Am Benthol Soc 28:440–453. doi:10.1899/07-083.1
Arsuffi TL, Suberkropp K (1985) Selective feeding by stream caddisfly (Trichoptera) detritivores on leaves with fungal-colonized patches. Oikos 45:50–58. doi:10.2307/3565221
Artigas J, Romaní AM, Sabater S (2008) Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. Aquat Bot 88:32–38. doi:10.1016/j.aquabot.2007.08.005
Bärlocher F, Sridhar KR (2014) Association of animals and fungi in leaf decomposition. In: Jones EBG, Hyde KD, Pang KL (eds) Freshwater fungi and fungal-like organisms. Walter de Gruyter, Berlin, pp 412–441
Bisht S (2013) Growth responses of aquatic hyphomycetes to different sources of carbon and nitrogen. J Appl Natl Sci 5:313–317
Bowman WD, Gleveland CO, Halada L, Hresko J, Baron JL (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1:767–770. doi:10.1038/ngeo339
Bryant JP, Clausen TP, Reichardt PB, McCarthy MC, Werner RA (1987) Effect of nitrogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix ((Choristoneura conflictana (Walker)). Oecologia 73(513):517. doi:10.1007/BF00379408
Chandrashekar KR, Kaveriappa KM (1988) Production of extracellular enzymes by aquatic hyphomycetes. Folia Microbiol 33:55–58. doi:10.1007/BF02928015
Chapin FS, Moilanen L (1991) Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72:709–715. doi:10.2307/2937210
Chung N, Suberkropp K (2009) Effects of aquatic fungi on feeding preferences and bioenergetics of Pycnopsyche gentilis (Trichoptera: Limnephilidae). Hydrobiologia 630:257–269. doi:10.1007/s10750-009-9820-y
Clarke KR, Gorley RN (2001) Primer v5: user manual/tutorial. Primer-E, Plymouth
Cornut J, Elger A, Lambrigot D, Marmonier P, Chauvet E (2010) Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshw Biol 55:2541–2556. doi:10.1111/j.1365-2427.2010.02483.x
Cornut J, Ferreira V, Gonçalves AL, Chauvet E, Canhoto C (2015) Fungal alteration of the elemental composition of leaf litter affects shredder feeding activity. Freshw Biol 60:1755–1771. doi:10.1111/fwb.12606
Cross WF, Wallace JB, Rosemond AD, Eggert SL (2006) Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87:1556–1565. doi:10.1890/0012-9658(2006)87[1556:WNEISP]2.0.CO;2
Dang CK, Chauvet E, Gessner MO (2005) Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecol Lett 8:1129–1137. doi:10.1111/j.1461-0248.2005.00815.x
Danger M, Gessner MO, Bärlocher F (2016) Ecological stoichiometry of aquatic fungi: current knowledge and perspectives. Fungal Ecol 19:100–111. doi:10.1016/j.funeco.2015.09.004
Fernandes I, Seena S, Pascoal C, Cássio F (2014) Elevated temperature may intensify the positive effects of nutrients on microbial decomposition instreams. Freshw Biol 59:2390–2399. doi:10.1111/fwb.12445
Ferreira V, Chauvet E (2011a) Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob Change Biol 17:551–564. doi:10.1111/j.1365-2486.2010.02185.x
Ferreira V, Chauvet E (2011b) Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 167:279–291. doi:10.1007/s00442-011-1976-2
Ferreira V, Graça MA (2016) Effects of whole-stream nitrogen enrichment and litter species mixing on litter decomposition and associated fungi. Limnologica 58:69–77. doi:10.1016/j.limno.2016.03.002
Ferreira V, Gulis V, Graça MAS (2006) Whole stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149:718–729. doi:10.1007/s00442-006-0478-0
Ferreira V, Encalada AC, Graça MA (2012) Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshw Sci 31:945–962. doi:10.1899/11-062.1
Ferreira V, Castagneyrol B, Koricheva J, Gulis V, Chauvet E, Graça MAS (2015) A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biol Rev 90:669–688. doi:10.1111/brv.12125
Frainer A, Jabiol J, Gessner MO, Bruder A, Chauvet E, McKie BG (2015) Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos 125:861–871. doi:10.1111/oik.02687
Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71. doi:10.1579/0044-7447-31.2.64
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi:10.1126/science.1136674
Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507
Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807–1817. doi:10.2307/1939639
Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagents, procedures and some applications). Agricultural handbook. US Department of Agriculture, Washington, DC, pp 1–2
Graça MAS, Cressa C (2010) Leaf quality of some tropical and temperate tree species as food resource for stream shredders. Internat Rev Hydrobiol 95:27–41. doi:10.1002/iroh.200911173
Graça MA, Poquet JM (2014) Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia 174:1021–1032. doi:10.1007/s00442-013-2825-2
Graça MAS, Bärlocher F, Gessner MO (2005) Methods to study litter decomposition. A practical guide. Springer, The Netherlands
Griffiths BS, Spilles A, Bonkowski M (2012) C:N: P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess. Ecol Proc 1:6. doi:10.1186/2192-1709-1-6
Grimmett IJ, Shipp KN, Macneil A, Bärlocher F (2013) Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecol 6:493–500. doi:10.1016/j.funeco.2013.08.002
Gulis V, Suberkropp K (2003a) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134. doi:10.1046/j.1365-2427.2003.00985.x
Gulis V, Suberkropp K (2003b) Effects of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11–19. doi:10.1007/s00248-002-1032-1
Gulis V, Suberkropp K (2004) Effects of whole-stream nutrient enrichment on the concentration and abundance of aquatic hyphomycete conidia in transport. Mycologia 96:57–65. doi:10.1080/15572536.2005.11832997
Gulis V, Rosemond AD, Suberkropp K, Weyers HS, Benstead JP (2004) Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshw Biol 49:1437–1447. doi:10.1111/j.1365-2427.2004.01281.x
Gulis V, Ferreira V, Graça MAS (2006) Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshw Biol 51:1655–1669. doi:10.1111/j.1365-2427.2006.01615.x
Hieber M, Gessner MO (2002) Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038. doi:10.2307/3071911
Holland EA, Braswell BH, Sulzman J, Lamarque JF (2005) Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecol Appl 15:38–57. doi:10.1890/03-5162
Huang JY, Zhu XG, Yuan ZY, Song SH, Li X, Li LH (2008) Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient. Plant Soil 306:149–158. doi:10.1007/s11104-008-9565-9
Lawler IR, Foley WJ, Woodrow IE, Cork SJ (1997) The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 109:59–68. doi:10.1007/s004420050058
Lecerf A, Chauvet E (2008) Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl Ecol 9:598–605. doi:10.1016/j.baae.2007.11.003
LeRoy CJ, Whitham TG, Wooley SC, Marks JC (2007) Within-species variation in foliar chemistry influences leaf-litter decomposition in a Utah river. J N Am Benthol Soc 26:426–438. doi:10.1899/06-113.1
Liu P, Huang J, Sun JO, Han X (2010) Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia 162:771–780. doi:10.1007/s00442-009-1506-7
Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013) Enhanced nitrogen deposition over China. Nature 7438:459–462. doi:10.1038/nature11917
MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: synthesis. Island, Washington, DC
Meunier CL, Gundale MJ, Sanchez IS, Liess A (2016) Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob Chang Biol 22:164–179. doi:10.1111/gcb.12967
Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165. doi:10.1007/s004420000615
Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273. doi:10.1128/AEM.70.9.5266-5273.2004
Pascoal C, Cássio F, Marvanová L (2005) Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low-order stream. Arch Hydrobiol 162:481–496. doi:10.1127/0003-9136/2005/0162-0481
Pereira A, Geraldes P, Lima-Fernandes E, Fernandes I, Cássio F, Pascoal C (2016) Structural and functional measures of leaf-associated invertebrates and fungi as predictors of stream eutrophication. Ecol Ind 69:648–656. doi:10.1016/j.ecolind.2016.05.017
Poff NL, Brinson MM, Day JW Jr (2002) Aquatic ecosystems and global climate change. Potential impacts on inland freshwater and coastal wetland ecosystems in the United States. Pew Center on Global Climate Change, Arlington
Pozo J, Basaguren A, Elosegui A, Molinero J, Fabre E, Chauvet E (1998) Aflorestation with Eucalyptus globulus and leaf litter decomposition in streams of northern Spain. Hydrobiologia 373(374):101–109. doi:10.1023/A:1017038701380
R Core Team (2014) R: a language and environment for statistical computing. http://www.R-project.org/. Accessed on May 2016
Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006. doi:10.1073/pnas.0403588101
Rockström J, Steffen W, Noone K, Persson A, Chapin F, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475. doi:10.1038/461472a
Rosemond AD, Pringle CM, Ramírez A, Paul MJ, Meyer JL (2002) Landscape variation in phosphorus concentration and effects on detritus-based tropical streams. Limnol Oceanogr 47:278–289. doi:10.4319/lo.2002.47.1.0278
Rosemond AD, Benstead JP, Bumpers PM, Gulis V, Kominoski JS, Manning DWP, Suberkropp K, Wallace B (2015) Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347:1142–1145. doi:10.1126/science.aaa1958
Schindler MH, Gessner MO (2009) Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90:1641–1649. doi:10.1890/08-1597.1
Suberkropp K (1998) Effect of dissolved nutrients on two aquatic hyphomycetes growing on leaf litter. Mycol Res 102:998–1002. doi:10.1017/S0953756297005807
Suberkropp K, Chauvet E (1995) Regulation of leaf breakdown by fungi in streams: influences of water chemistry. Ecology 76:1433–1445. doi:10.2307/1938146
Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci 94:1857–1861. doi:10.1073/pnas.94.5.1857
Tonello G, Naziloski LA, Tonin A, Restello RM, Hepp LU (2016) Effect of Phylloicus on leaf breakdown in a subtropical stream. Limnetica 35:243–252
Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137. doi:10.1139/f80-017
Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220. doi:10.1890/11-0416.1
Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104. doi:10.1126/science.277.5322.102
Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, Lecerf A, Malmqvist B, McKie BG, Tiegs SD, Cariss H, Dobson M, Elosegi A, Ferreira V, Graça MAS, Fleituch T, Lacoursière J, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought LB-M, Chauvet E (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–1440. doi:10.1126/science.1219534
Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19. doi:10.1046/j.1365-2435.2003.00694.x
Yuan Z, Chen HYH (2009) Global trends in senesced-leaf nitrogen and phosphorus. Global Ecol Biogeogr 18:532–542. doi:10.1111/j.1466-8238.2009.00474.x
Yuan Z, Chen HYH (2015) Negative effects of fertilization on plant nutrient resorption. Ecology 96:373–380. doi:10.1890/14-0140.1
Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Penuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol Monogr 85:133–155. doi:10.1890/14-0777.1
Zhang L, Jacob DJ, Knipping EM, Kumar N, Munger JW, Carouge CC, Donkelaar AV, Wang YX, Chen D (2012) Nitrogen deposition to the United States: distribution, sources, and processes. Atmos Chem Phys 12:4539–4554. doi:10.5194/acp-12-4539-2012
