Nusselt number and friction factor correlations for solar air heater duct with broken V-down ribs combined with staggered rib roughness

Anil Kumar Patil1, J.S. Saini2, Khushmeet Kumar3
1Uttarakhand Technical University 1 , Dehradun (U.A.) 248009, India
2Department of Mechanical and Industrial Engineering, Indian Institute of Technology 2 , Roorkee 247667, India
3Department of Mechanical Engineering, D. I. T. 3 , Dehradun (U.A.) 248009, India

Tóm tắt

Artificial roughening of a broad wall of solar air heater leads to significant enhancement in heat transfer besides comparable rise in friction losses. This paper presents the outcome of experimental study on heat transfer and fluid friction characteristics of solar air heater duct roughened with broken V-down rib combined with staggered rib piece. Experimental data were collected on a high aspect ratio rectangular duct by varying the Reynolds number from 3000 to 17 000, relative gap position (s′/s) 0.2–0.8, relative staggered rib position (p′/p) 0.2–0.8, relative staggered rib size (r/e) 1–2.5, for the fixed values of relative roughness pitch (p/e) of 10, relative roughness height (e/Dh) of 0.043, relative gap size (g/e) of 1, and angle of attack (α) of 60°. The effect of flow Reynolds number and roughness parameters on Nusselt number and friction factor has been explored and the results are compared with continuous V-down rib roughened duct and smooth duct under similar flow conditions. Correlations for the Nusselt number and friction factor as a function of Reynolds number and roughness parameters have been developed.

Từ khóa


Tài liệu tham khảo

1971, Int. J. Heat Mass Transfer, 14, 601, 10.1016/0017-9310(71)90009-3

1978, Int. J. Heat Mass Transfer, 21, 1143, 10.1016/0017-9310(78)90113-8

1991, Sol. Energy, 47, 91, 10.1016/0038-092X(91)90039-Y

1996, J. Turbomach., 118, 20, 10.1115/1.2836602

2001, Heat Mass Transfer, 37, 315, 10.1007/s002310000148

1991, Trans. ASME, Ser. C: J. Heat Transfer, 113, 590, 10.1115/1.2910606

1991, J. Turbomach., 113, 360, 10.1115/1.2927884

1991, J. Turbomach., 113, 367, 10.1115/1.2927885

1991, Int. J. Heat Mass Transfer, 34, 1605, 10.1016/0017-9310(91)90140-A

1993, Int. J. Heat Mass Transfer, 36, 2013, 10.1016/S0017-9310(05)80132-2

2001, Exp. Therm. Fluid Sci., 24, 25, 10.1016/S0894-1777(00)00054-6

2002, Int. J. Heat Mass Transfer, 45, 3383, 10.1016/S0017-9310(02)00046-7

2003, Int. Commun. Heat Mass Transfer, 30, 241, 10.1016/S0735-1933(03)00035-6

2004, J. Turbomach., 126, 604, 10.1115/1.1791286

2004, Int. J. Heat Mass Transfer, 47, 229, 10.1016/S0017-9310(03)00414-9

2003, J. Enhanced Heat Transfer, 10, 287, 10.1615/JEnhHeatTransf.v10.i3.40

1992, Int. J. Heat Mass Transfer, 35, 513, 10.1016/0017-9310(92)90286-2

2004, Exp. Heat Transfer, 17, 243, 10.1080/08916150490487611

2010, Sol. Energy, 84, 898, 10.1016/j.solener.2010.02.004

2008, Renewable Energy, 33, 585, 10.1016/j.renene.2007.03.023

2009, Int. J. Heat Mass Transfer, 52, 5970, 10.1016/j.ijheatmasstransfer.2009.05.032

2010, Energy, 35, 398, 10.1016/j.energy.2009.10.007

2011, J. Renewable Sustainable Energy, 3, 013108, 10.1063/1.3558865

2011, Energy, 36, 5053, 10.1016/j.energy.2011.05.052

2012, Sol. Energy, 86, 1733, 10.1016/j.solener.2012.03.014

2012, J. Renewable Sustainable Energy, 4, 013115, 10.1063/1.3682072

ASHRAE Standard 93–77, 1977

1953, Mech. Eng., 75, 3

1998, Handbook of Heat Transfer

1987, Hand Book of Single-Phase Convective Heat Transfer