Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmadi, S.M., Campoli, G., Amin Yavari, S., et al.: Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J. Mech. Behav. Biomed. Mater. 34, 106–115 (2014)
Alzahrani, M., Choi, S.-K., Rosen, D.W.: Design of truss-like cellular structures using relative density mapping method. Mater. Des. 85, 349–360 (2015)
Ashby, M.F., Medalist, R.M.: The mechanical properties of cellular solids. Metall. Trans. A 14(9), 1755–1769 (1983)
Brandl, E., Heckenberger, U., Holzinger, V., et al.: Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159–169 (2012)
Brennan-Craddock, J., Brackett, D., Wildman, R., et al.: The design of impact absorbing structures for additive manufacture. In: Journal of Physics: Conference Series. IOP Publishing (2012)
Brenne, F., Niendorf, T., Maier, H.J.: Additively manufactured cellular structures: impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. J. Mater. Process. Technol. 213(9), 1558–1564 (2013)
Choi, J., Chae, T.-S.: Effective stiffness and effective compressive yield strength for unit-cell model of complex truss. Int. J. Mech. Mater. Des. 11(1), 91–110 (2015)
Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49(8), 1747–1769 (2001)
Eshraghi, S., Das, S.: Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone–hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater. 8(8), 3138–3143 (2012)
Evans, A.G., Hutchinson, J.W., Fleck, N.A., et al.: The topological design of multifunctional cellular metals. Prog. Mater Sci. 46(3), 309–327 (2001)
Gervasi, V.R., Stahl, D.C.: Design and fabrication of components with optimized lattice microstructures. In: Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX (2004)
Giannitelli, S., Accoto, D., Trombetta, M., et al.: Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 10(2), 580–594 (2014)
Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)
Gibson, L.J., Ashby, M.: The mechanics of three-dimensional cellular materials. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society (1982)
Gorguluarslan, R.M., Gandhi, U.N., Mandapati, R., et al.: Design and fabrication of periodic lattice-based cellular structures. Comput. Aided Des. Appl. 13(1), 50–62 (2016)
Hao, L, Raymond, D.: Design and additive manufacturing of cellular lattice structures. In: The International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP). Taylor & Francis Group, Leiria (2011)
Hunt, H.: The mechanical strength of ceramic honeycomb monoliths as determined by simple experiments: advanced materials. Chem. Eng. Res. Des. 71(3), 257–266 (1993)
Jin, T., Zhou, Z., Wang, Z., et al.: Experimental study on the effects of specimen in-plane size on the mechanical behavior of aluminum hexagonal honeycombs. Mater. Sci. Eng. A 635, 23–35 (2015)
Ju, J., Summers, J.D.: Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain. Mater. Des. 32(2), 512–524 (2011)
Kempen, K., Thijs, L., Van Humbeeck, J., et al.: Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Procedia 39, 439–446 (2012)
Lee, S., Barthelat, F., Moldovan, N., et al.: Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials. Int. J. Solids Struct. 43(1), 53–73 (2006)
Li, P.: Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures. Mater. Sci. Eng., A 622, 114–120 (2015)
Li, Z., Zhang, D.Z., Dong, P., et al.: A lightweight and support-free design method for selective laser melting. Int. J. Adv. Manuf. Technol. 90(9–12), 2943–2953 (2017)
Luxner, M.H., Stampfl, J., Pettermann, H.E.: Finite element modeling concepts and linear analyses of 3D regular open cell structures. J. Mater. Sci. 40(22), 5859–5866 (2005)
Maskery, I., Aboulkhair, N.T., Corfield, M.R., et al.: Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography. Mater. Charact. 111, 193–204 (2016)
Nguyen, J., Park, S.-I., Rosen, D.: Heuristic optimization method for cellular structure design of light weight components. Int. J. Precis. Eng. Manuf. 14(6), 1071–1078 (2013)
Niu, J., Choo, H.L., Sun, W.: Finite element analysis and experimental study of plastic lattice structures manufactured by selective laser sintering. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 231(1–2), 171–178 (2017)
Onck, P., Andrews, E., Gibson, L.: Size effects in ductile cellular solids. Part I: modeling. Int. J. Mech. Sci. 43(3), 681–699 (2001)
Park, S.-I., Rosen, D.W., Choi, S.-K., et al.: Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing. Addit. Manuf. 1, 12–23 (2014)
Parthasarathy, J., Starly, B., Raman, S.: A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J. Manuf. Process. 13(2), 160–170 (2011)
Read, N., Wang, W., Essa, K., et al.: Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater. Des. 65, 417–424 (2015)
Reinhart, G., Teufelhart, S.: Load-adapted design of generative manufactured lattice structures. Phys. Procedia 12, 385–392 (2011)
Rosen, D.W.: Design for additive manufacturing: a method to explore unexplored regions of the design space. In: Eighteenth Annual Solid Freeform Fabrication Symposium (2007)
Seepersad, C.C., Kumar, R.S., Allen, J.K., et al.: Multifunctional design of prismatic cellular materials. J. Comput. Aided Mater. Des. 11(2), 163–181 (2004)
Smith, M., Guan, Z., Cantwell, W.J.: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013)
Solutions, S.: SLM Metal Powder. https://slm-solutions.com/products/accessories-and-consumables/slm-metal-powder (2016)
Wang, H., Chen, Y., Rosen, D.W.: A hybrid geometric modeling method for large scale conformal cellular structures. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers (2005)
Wang, D., Yang, Y., Liu, R., et al.: Study on the designing rules and processability of porous structure based on selective laser melting (SLM). J. Mater. Process. Technol. 213(10), 1734–1742 (2013)
Williams, C.B., Cochran, J.K., Rosen, D.W.: Additive manufacturing of metallic cellular materials via three-dimensional printing. Int. J. Adv. Manuf. Technol. 53(1), 231–239 (2011)
Yan, C., Hao, L., Hussein, A., et al.: Evaluations of cellular lattice structures manufactured using selective laser melting. Int. J. Mach. Tools Manuf. 62, 32–38 (2012)
Yan, C., Hao, L., Hussein, A., et al.: Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Mater. Sci. Eng. A 628, 238–246 (2015)
Yang, L., Harrysson, O., Cormier, D., et al.: Additive manufacturing of metal cellular structures: design and fabrication. JOM 67(3), 608–615 (2015)
Youssef, S., Maire, E., Gaertner, R.: Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Mater. 53(3), 719–730 (2005)