Numerical study of the variable-order time-fractional mobile/immobile advection-diffusion equation using direct meshless local Petrov-Galerkin methods

Computers & Mathematics with Applications - Tập 135 - Trang 111-123 - 2023
Erfan Bahmani1, Ali Shokri1
1Department of Mathematics, University of Zanjan, Zanjan, Iran

Tài liệu tham khảo

Koeller, 1984, Application of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 51, 229, 10.1115/1.3167616 Benson, 2000, Application of a fractional advection dispersion equation, Water Resour. Res., 36, 1403, 10.1029/2000WR900031 Butzer, 2000, An introduction to fractional calculus, 1 Dou, 2014, Numerical computation for backward time-fractional diffusion equation, Eng. Anal. Bound. Elem., 40, 138, 10.1016/j.enganabound.2013.12.001 Yang, 2010 Roop, 2006, Computational aspect of fem approximation of fractional advection dispersion equation on bounded domains in R2, J. Comput. Appl. Math., 193, 243, 10.1016/j.cam.2005.06.005 Lin, 2007, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533, 10.1016/j.jcp.2007.02.001 Esmaeili, 2011, A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16, 3646, 10.1016/j.cnsns.2010.12.008 Shokri, 2020, Numerical study of the two-term time-fractional differential equation using the Lagrange polynomial pseudo-spectral method, Alex. Eng. J., 59, 3163, 10.1016/j.aej.2020.07.031 Zhuang, 2009, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47, 1760, 10.1137/080730597 Zhang, 2011, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys., 230, 8713, 10.1016/j.jcp.2011.08.020 Shirzadi, 2012, Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equation, Eng. Anal. Bound. Elem., 36, 1522, 10.1016/j.enganabound.2012.05.005 Zhuang, 2011, Time-dependent fractional advection-diffusion equations by an implicit mls meshless method, Int. J. Numer. Methods Eng., 88, 1346, 10.1002/nme.3223 Zhao, 2019, A mixed finite volume element method for time-fractional reaction-diffusion equations on triangular grids, Mathematics, 7, 600, 10.3390/math7070600 Kumar, 2020, A local meshless method for time fractional nonlinear diffusion wave equation, Numer. Algorithms, 85, 1311, 10.1007/s11075-019-00866-9 Bhardwaj, 2021, A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation, Appl. Numer. Math., 160, 146, 10.1016/j.apnum.2020.09.019 Kumar, 2019, A meshless local collocation method for time fractional diffusion wave equation, Comput. Math. Appl., 78, 1851, 10.1016/j.camwa.2019.03.027 van Genuchten, 1976, Mass transfer studies in sorbing porous media: I. Analytical solutions, Soil Sci. Soc. Am. J., 40, 473, 10.2136/sssaj1976.03615995004000040011x Gao, 2010, A new mobile-immobile model for reactive solute transport with scale-dependent dispersion, Water Resour. Res., 46, 10.1029/2009WR008707 Salehi, 2018, A Hahn computational operational method for variable order fractional mobile-immobile advection-dispersion equation, Math. Sci., 12, 91, 10.1007/s40096-018-0248-2 Abdelkawy, 2015, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Comput. Math. Appl., 67, 773 Tayebi, 2017, A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation, J. Comput. Phys., 340, 655, 10.1016/j.jcp.2017.03.061 Salama, 2022, Numerical solution of two-dimensional time fractional mobile/immobile equation using explicit group methods, Int. J. Appl. Comput. Math., 8, 188, 10.1007/s40819-022-01408-z Habibirad, 2021, An efficient meshless method based on the moving Kriging interpolation for two-dimensional variable-order time fractional mobile/immobile advection-diffusion model, Math. Methods Appl. Sci., 44, 3182, 10.1002/mma.6759 Nguyen, 2008, Meshless methods: review and key computer implementation aspects, Math. Comput. Simul., 79, 763, 10.1016/j.matcom.2008.01.003 Dai, 2013, Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method, Appl. Math. Comput., 219, 10044 Gingold, 1997, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375, 10.1093/mnras/181.3.375 Shokri, 2019, Direct meshless local Petrov–Galerkin (dmlpg) method for 2d complex Ginzburg–Landau equation, Eng. Anal. Bound. Elem., 100, 195, 10.1016/j.enganabound.2018.05.008 Mirzaei, 2014, Solving heat conduction problems by the direct meshless local Petrov-Galerkin (dmlpg) method, Numer. Algorithms, 65, 275, 10.1007/s11075-013-9711-1 Atluri, 1998, A new meshless local Petrov Galerkin approach in computational mechanics, Comput. Mech., 22, 17, 10.1007/s004660050346 Atluri, 2000, Meshless local Petrov-Galerkin (mlpg) method for convection-diffusion problems, Comput. Model. Eng. Sci., 2, 45 Atluri, 2002, The meshless local Petrov-Galerkin (mlpg) method: a simple and less-costly alternative to the finite element and boundary element methods, Comput. Model. Eng. Sci., 3, 11 Ramezani, 2015, Dmlpg solution of the fractional advection-diffusion problem, Eng. Anal. Bound. Elem., 59, 36, 10.1016/j.enganabound.2015.04.012 Dehghan, 2017, Numerical investigation based on direct meshless local Petrov-Galerkin (direct mlpg) method for solving generalized Zakharov system in one and two dimensions and generalized Gross-Pitaevskii equation, Eng. Comput., 33, 983, 10.1007/s00366-017-0510-5 Ilati, 2017, Application of direct meshless local Petrov-Galerkin (dmlpg) method for some Turing-type models, Eng. Comput., 33, 107, 10.1007/s00366-016-0458-x Taleei, 2014, Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic, Comput. Methods Appl. Mech. Eng., 278, 479, 10.1016/j.cma.2014.05.016 Sartoretto, 2014, The dmlpg meshless technique for Poisson problems, Appl. Math. Sci., 164, 8233 Wang, 2014, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, Math. Comput., 277, 1 Mirzaei, 2013, Direct meshless local Petrov-Galerkin (dmlpg) method: a generalized mls approximation, Appl. Numer. Math., 68, 73, 10.1016/j.apnum.2013.01.002 Ji, 2015, High-order compact finite difference scheme for the fractional sub-diffusion equation, J. Sci. Comput., 64, 959, 10.1007/s10915-014-9956-4 Tian, 2015, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 84, 1703, 10.1090/S0025-5718-2015-02917-2 Dehghan, 2017, Error analysis of method of lines (mol) via generalized interpolating moving least squares (gimls) approximation, J. Comput. Appl. Math., 321, 540, 10.1016/j.cam.2017.03.006 Mirzaei, 2016, Error bounds for gmls derivatives approximations of Sobolev functions, J. Comput. Appl. Math., 294, 93, 10.1016/j.cam.2015.08.003