Numerical study of partially drained penetration and pore pressure dissipation in piezocone test

Acta Geotechnica - Tập 12 - Trang 195-209 - 2016
Francesca Ceccato1, Paolo Simonini1
1University of Padova, Padua, Italy

Tóm tắt

The piezocone penetration test (CPTU) is commonly used as a fast and economical tool to identify soil profile and to estimate relevant material properties in soils ranging from fine to coarse-grained. Moreover, in the case of fine-grained soils (clays and silts), the consolidation coefficient and the permeability can be estimated through the dissipation test. Undrained conditions are commonly assumed for the interpretation of CPTU in fine-grained soils, but in soils such as silts, penetration may occur in partially drained conditions. This aspect is often neglected in data interpretation thus leading to an inaccurate estimate of soil properties. This paper investigates numerically the effect of partial drainage during penetration on the measured tip resistance and the subsequent pore pressure dissipation response contributing to a more accurate interpretation of field data. A realistic simulation of the cone penetration is achieved with the two-phase Material Point Method, modelling the soil response with the modified Cam-Clay model. The approach takes into account large soil deformations induced by the advancing cone, soil–water, and soil–structure interactions, as well as nonlinear soil behavior.

Tài liệu tham khảo

Abe K, Soga K, Bandara S (2013) Material Point Method for coupled hydromechanical problems. J Geotech Geoenviron Eng 140:1–16. doi:10.1061/(ASCE)GT.1943-5606.0001011 Al-Kafaji IKJ (2013) Formulation of a dynamic material point method (MPM) for geomechanical problems. University of Stuttgart, Stuttgart Alonso EE, Zabala F (2011) Progressive failure of Aznalcóllar dam using the material point method. Géotechnique 61:795–808. doi:10.1680/geot.9.P.134 Alonso EE, Yerro A, Pinyol NM (2015) Recent developments of the Material Point Method for the simulation of landslides. IOP Conf Ser Earth Environ Sci 26:012003. doi:10.1088/1755-1315/26/1/012003 Andersen S, Andersen L (2010) Modelling of landslides with the material-point method. Comput Geosci 14:137–147. doi:10.1007/s10596-009-9137-y Bandara S, Soga K (2015) Coupling of soil deformation and pore fluid flow using material point method. Comput Geotech 63:199–214. doi:10.1016/j.compgeo.2014.09.009 Bardenhagen SG, Guilkey JE, Roessig KM, Brackbill JU, Witzel WM, Foster JC (2001) An improved contact algorithm for the material point method and application to stress propagation in granular material. Comput Model Eng Sci 2:509–522 Beuth L (2012) Formulation and application of a quasi-static material point method. University of Stuttgart, Stuttgart Beuth L, Vermeer PA (2013) Large deformation analysis of cone penetration testing in undrained clay. In: Hicks MA, Dijkstra J, LloretCabot M et al (eds) International conference on installation effects in geotechnical engineering (ICIEGE), Rotterdam, pp 1–7 Ceccato F (2014) Study of large deformation geomechanical problems with the Material Point Method. University of Padua, Italy Ceccato F, Beuth L, Vermeer PA, Simonini P (2014) Two-phase Material Point Method applied to cone penetration for different drainage conditions. In: Geomechanics from micro to macro—Proceedings of the TC105 ISSMGE international symposium on geomechanics from micro to macro, IS-Cambridge 2014, vol 2, pp 965–970 Chai J, Sheng D, Carter JP, Zhu H (2012) Coefficient of consolidation from non-standard piezocone dissipation curves. Comput Geotech 41:13–22. doi:10.1016/j.compgeo.2011.11.005 Chung SF, Randolph MF, Schneider JA (2006) Effect of penetration rate on penetrometer resistance in clay. J Geotech Geoenviron Eng 132(9):1188–1196 Coetzee CJ (2005) The material point method. Stellenbosch Publishers, Stellenbosch Coetzee CJ, Vermeer PA, Basson AH (2005) The modelling of anchors using the material point method. Int J Numer Anal Methods Geomech 29:879–895. doi:10.1002/nag.439 DeJong J, Randolph M (2012) Influence of partial consolidation during cone penetration on estimated soil behavior type and pore pressure dissipation measurements. J Geotech Geoenviron Eng. doi:10.1061/(ASCE)GT.1943-5606.0000646 Fahey M, Goh AL (1995) A comparison of pressuremeter and piezocone methods of determining the coefficient of consolidation. In: Press. its new Ave., pp 153–160 Finnie I, Randolph M (1994) Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments. In: Proceedings of the international conference on behaviour of offshore structures Harlow F (1964) The particle-in-cell computing method for fluid dynamics. Methods Comput Phys 3:319–343 House A, Oliveira J, Randolph MF (2001) Evaluating the coefficient of consolidation using penetration tests. Int J Phys Model Geotech 1:17–26 Hu W, Chen Z (2003) A multi-mesh MPM for simulating the meshing process of spur gears. Comput Struct 81:1991–2002. doi:10.1016/S0045-7949(03)00260-8 Jaeger R, DeJong J, Boulanger RW, Low HE, Randolph MF (2010) Variable penetration rate CPT in an intermediate soil. In: Proceedings, 2nd international symposium on cone penetration testing Jassim I, Stolle D, Vermeer P (2013) Two-phase dynamic analysis by material point method. Int J Numer Anal Methods Geomech Anal methods Geomech 37:2502–2522. doi:10.1002/nag Kim K, Prezzi M, Salgado R, Lee W (2008) Effect of penetration rate on cone penetration resistance in saturated clayey soils. J Geotech Geoenviron Eng 134(8):1142–1153 Lehane BM, O’Loughlin CD, Randolph MF, Gaudin C (2009) Rate effects on penetrometer resistance in kaolin. Géotechnique 59:41–52. doi:10.1680/geot.2007.00072 Levadoux J, Baligh M (1986) Consolidation after undrained piezocone penetration. I: prediction. J Geotech Eng 112:707–726 Lim L (2014) On the application of the material point method for offshore foundations. In: Hicks M, Brinkgreve RBJ, Rohe A (eds) Numerical methods geotechnical engineering. Taylor and Francis Group, London, pp 253–258 Love E, Sulsky D (2005) An energy consistent material point method for dynamic finite deformation plasticity. Albuquerque, New Mexico Lunne T, Robertson P, Powell J (1997) Cone penetration testing in geotechnical practice. Chapman-Hall, London Mahmoodzadeh H, Randolph M (2014) Penetrometer Testing: effect of partial consolidation on subsequent dissipation response. J Geotech Geoenviron Eng 04014022:1–12. doi:10.1061/(ASCE)GT.1943-5606.0001114 Mahmoodzadeh H, Randolph M, Wang D (2014) Numerical simulation of piezocone dissipation test in clays. Geotechnique 64:657–666 Mieremet MMJ, Stolle DF, Ceccato F, Vuik C (2015) Numerical stability for modelling of dynamic two-phase interaction. Int J Numer Anal Methods Geomech. doi:10.1002/nag.2483 Oliveira JRMS, Almeida MSS, Motta HPG, Almeida MCF (2011) Influence of penetration rate on penetrometer resistance. J Geotech Geoenviron Eng 137:695–703. doi:10.1061/(ASCE)GT.1943-5606.0000480 Phuong NTV, van Tol AF, Elkadi ASK, Rohe A (2016) Numerical investigation of pile installation effects in sand using material point method. Comput Geotech 73:58–71. doi:10.1016/j.compgeo.2015.11.012 Randolph M, Hope S (2004) Effect of cone velocity on cone resistance and excess pore pressures. In: Proceedings of the international symposium engineering practice and performance of soft deposits Randolph M, Wroth C (1979) An analytical solution for the consolidation around a driven pile. Int J Numer Anal Methods Geomech 3:217–229 Robertson P, Sully J, Woeller D, Lunne T, Powell J, Gillespie D (1992) Estimating coefficient of consolidation from piezocone tests. Can Geotech J 29:539–550 Roscoe KH, Burland JB (1968) On the generalised stress–strain behaviour of wet clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, pp 535–609 Schneider J, Lehane BM, Schnaid F (2007) Velocity effects on piezocone measurements in normally and over consolidated clays. Int J Phys Model Geotech 7:23–34 Silva MF, White DJ, Bolton MD (2006) An analytical study of the effect of penetration rate on piezocone tests in clay. Int J Numer Anal Methods Geomech 30(6):501–527 Soga K, Alonso E, Yerro A, Kumar K, Bandara S (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3):248–273 Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196 Teh C, Houlsby G (1991) An analytical study of the cone penetration test in clay. Geotechnique. doi:10.1016/0148-9062(91)91308-E Torstensson BA (1977) The pore pressure probe. Nord Geotek Mote 34:1–34 Vaughan PR, Lemos LJL (2000) Clay–interface shear resistance. Géotechnique 50:55–64. doi:10.1680/geot.2000.50.1.55 Vermeer PA, Yuan Y, Beuth L, Bonnier P (2009) Application of interface elements with the Material Point Method. In: Proceedings of the 18th international conference on computer methods in mechanics, vol 18. Polish Academy of Sciences, pp 477–478 Wieckowski Z (2001) Analysis of granular flow by the Material Point Method. Eur Conf Comput Mech Wieckowski Z, Youn S, Yeon J (1999) A particle-in-cell solution to the silo discharging problem. Int J Numer Methods Eng 45:1203–1225 Yerro A, Alonso E, Pinyol N (2013) The Material Point Method: a promising computational tool in geotechnics. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering. Paris, pp 853–856 Yerro A, Alonso EE, Pinyol NM (2015) The material point method for unsaturated soils. Geotechnique 65:201–217 Yi JT, Randolph MF, Goh SH, Lee FH (2012) A numerical study of cone penetration in fine-grained soils allowing for consolidation effects. Géotechnique 62:707–719. doi:10.1680/geot.8.P.155 Zhang HW, Wang KP, Chen Z (2009) Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies. Comput Methods Appl Mech Eng 198:1456–1472. doi:10.1016/j.cma.2008.12.006 Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T (1999) Computational geomechanics. Wiley, New York