Numerical study of magnetic field effect on natural convection heat and mass transfers in a square enclosure containing non-Newtonian fluid and submitted to horizontal temperature and concentration gradients

The European Physical Journal Plus - Tập 136 Số 10 - 2021
T. Makayssi1, Mohamed Lamsaadi1, Mourad Kaddiri2
1Faculty of Sciences and Technologies, Laboratory of Flows and Transfers Modelling, Sultan Moulay Slimane University, B.P. 523, Béni-Mellal, Morocco
2Faculty of Sciences and Technologies, Industrial Engineering Laboratory, Sultan Moulay Slimane University, B.P. 523, Béni-Mellal, Morocco

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. Ostrach, Natural convection with combined driving forces, Physico Chem. Hydrodyn. 1, (1980)

R. Viskanta, T.L. Bergman, F.P. Incopera, Double-diffusive natural convection in Natural Convection, Fundamentals and Applications, Hemisphere, Washington DC (1985)

M. Sathiyamoorthy, A. Chamkha, Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int. J. Therm. Sci. 49, 1856–1865 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.04.014

V.R. Gowariker, N.V. Viswanathan, J. Sreedhar, Polymer Science (New Age International (P) Limited publishers, Bangalore, 2001)

C.A. Harper, Handbook of Plastics Elastomers and Composites, 3rd edn. (McGraw Hill Professional Book Group, New York, 1996)

R. Moreau, Magnetohydrodynamics (Kluwer Academic Publishers, The Nelherlands, 1990)

P.A. Davidson, An Introduction to Magnetohydrodynamic (Cambridge University Press, 2001)

G.M. Oreper, J. Szekely, The effect of an externally imposed magnetic field on buoyancy driven flow in a rectangular cavity. J. Cryst. Growth 64, 505–515 (1983). https://doi.org/10.1016/0022-0248(83)90335-4

H. Ozoe, K. Okada, The effect of the direction of the external magnetic field on the three-dimensional natural convection in a cubical enclosure. Int. J. Heat Mass Transf. 32, 1939–1954 (1989). https://doi.org/10.1016/0017-9310(89)90163-4

T.P. Garandet, T. Alboussiere, Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Int. J. Heat Mass Transf. 35, 741–748 (1992). https://doi.org/10.1016/0017-9310(92)90242-K

M. Venkatachalappa, C.K. Subbaraya, Natural convection in a rectangular enclosure in the presence of a magnetic field with uniform heat flux from the side walls. Acta Mech. 96, 13–26 (1993). https://doi.org/10.1007/BF01340696

N. Rudraiah, R.M. Barron, M. Venkatachalappa, C.K. Subbaraya, Effect of a magnetic field on free convection in a rectangular enclosure. Int. J. Eng. Sci. 33, 1075–1084 (1995). https://doi.org/10.1016/0020-7225(94)00120-9

S. Alchaar, P. Vasseur, E. Bilgen, Natural convection heat transfer in a rectangular enclosure with a transverse magnetic field. J. Heat Transfer. 117, 668–673 (1995). https://doi.org/10.1115/1.2822628

S. Alchaar, P. Vasseur, E. Bilgen, The effect of a magnetic field on natural convection in a shallow cavity heated from below. Chem. Eng. Commun. 134, 195–209 (1995). https://doi.org/10.1080/00986449508936332

U. Burr, U. Muller, Rayleigh Bénard convection in liquid metal layers under the influence of a horizontal magnetic field. J. Fluid Mech. 453, 345–369 (2002). https://doi.org/10.1017/S002211200100698X

A.J. Chamkha, H.A. Naser, Hydromagnetic double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients. Int. J. Heat Mass Transf 45, 2465–2483 (2002). https://doi.org/10.1016/S0017-9310(01)00344-1

A.J. Chamkha, H.A. Naser, Hydromagnetic double-diffusive convection in a rectangular enclosure with uniform side heat and mass fluxes and opposing temperature and concentration gradients. Int J Therm Sci 41, 936–948 (2002). https://doi.org/10.1016/S1290-0729(02)01386-8

U. Burr, L. Barleon, P. Jochmann, A. Tsinober, Magnetohydrodynamic convection in a vertical slot with horizontal magnetic field. J. Fluid Mech 475, 21–40 (2003). https://doi.org/10.1017/S0022112002002811

M.C. Ece, E. Buyuk, Natural-convection flow under a magnetic field in an inclined rectangular enclosure heated and cooled on adjacent walls. Fluid Dyn Res. 38, 564–590 (2006). https://doi.org/10.1016/j.fluiddyn.2006.04.002

M. Pirmohammadi, M. Ghassemi, Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int. Commun. Heat Mass Transf. 36, 776–780 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2009.03.023

B. Ghasemi, S.M. Aminossadati, A. Raisi, Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 50, 1748–1756 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.04.010

G. Kefayati, Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field, Theor Comput. Fluid Dyn. 27, 865–883 (2013). https://doi.org/10.1007/s00162-012-0290-x

C. Maatki, K. Ghachem, L. Kolsi, A.H. Kadhim, M.N. Borjini, H. Ben Aissia, Inclination effects of magnetic field direction in 3D double-diffusive natural convection. Appl. Math. Comput.. 273, 178–189 (2016). https://doi.org/10.1016/j.amc.2015.09.043

M.A. Teamah, A.I. Shehata, Magnetohydrodynamic double diffusive natural convection in trapezoidal cavities. AEJ 55, 1037–1046 (2016). https://doi.org/10.1016/j.aej.2016.02.033

R. Nithish, K. Murugesan, Magnetic field influence on double-diffusive natural convection in a square cavity – a numerical study. Numer. Heat Transf. Part A Appl. 71, 1–28 (2017). https://doi.org/10.1080/10407782.2016.1277922

P.X. Yu, Z. Xiao, W. Shuang, Z.F. Tian, High accuracy numerical investigation of double-diffusive convection in a rectangular cavity under a uniform horizontal magnetic field and heat source. Int. J. Heat Mass Transf. 110, 613–628 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.068

T.R. Mahapatra, B.C. Saha, D. Pal, Magnetohydrodynamic double diffusive natural convection for nanofluid within a trapezoidal enclosure. J. Comput. Appl. Math. 37, 6132–6151 (2018). https://doi.org/10.1007/s40314-018-0676-5

P.X. Yu, J.X. Qiu, Q. Qin, Z.F. Tian, Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf. 67, 1131–1144 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.087

G. Kefayati, Simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a sinusoidal heated cavity using FDLBM. Int. Commun. Heat Mass Transf. 53, 139–153 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.02.026

G. Kefayati, FDLBM simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a linearly heated cavity. J. Comput. Appl. Math. 256, 87–99 (2014). https://doi.org/10.1016/j.powtec.2014.02.014

G. Kefayati, Mesoscopic simulation of magnetic field effect on natural convection of power-law fluids in a partially heated cavity. Chem. Eng. Res. Des. 94, 337–354 (2015). https://doi.org/10.1016/j.cherd.2014.08.014

M. Poonia, Computational study on MHD power-law fluid in tilted enclosure having sinusoidal heated sidewall. Multidiscip. Model. Mater. Struct. (2020). https://doi.org/10.1108/MMMS-08-2019-0154

L. Wang, Z. Chai, B. Shi, Lattice Boltzmann simulation of magnetic field effect on natural convection of power-law nanofluids in rectangular enclosures. Adv. Appl. Math. Mech. 9, 1094–1110 (2016). https://doi.org/10.4208/aamm.OA-2016-0066

H.A. Farooq, H.K. Hamzah, K. Egab, M. Arıcı, A. Shahsavar, Non-Newtonian nanofluid natural convection in a U-shaped cavity under magnetic field. Multidiscip. Model. Mater. Struct. (2020). https://doi.org/10.1016/j.ijmecsci.2020.105887

V. Shatrov, G. Mutschke, G. Gerbeth, Three-dimensional linear stability analysis of lid-driven magnetohydrodynamic cavity flow. Phys. Fluids 15, 2141–2151 (2003). https://doi.org/10.1063/1.1582184

S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, Washington, DC, USA, 1980)