Numerical study of laminar pulsed impinging jet on the metallic foam blocks using the local thermal non-equilibrium model

Journal of Thermal Analysis and Calorimetry - Tập 141 - Trang 1859-1874 - 2020
Seyed Mostafa Hosseinalipour1, Soroush Rashidzadeh1, Mahdi Moghimi1, Kazem Esmailpour2
1School of Mechanical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
2Renewable Energy Research Center, Damavand Branch, Islamic Azad University, Damavand, Iran

Tóm tắt

In this study, thermal performance of an impingement jet with the presence of porous block is numerically investigated. The study is comprised of two main parts. At first, a parametric study is conducted on the steady impingement jet with porous block. Later, the effect of porous block is assessed on the pulsative impingement jet. The effect of different pulsation frequencies and amplitudes is analyzed on the heat transfer between the jet and porous block. In order to model the thermal performance, the local thermal non-equilibrium model is applied to the system. An entropy generation study was also conducted in order to investigate the system’s performance from second law of thermodynamics point of view. In addition to the mentioned studies, by utilizing the energy density flux vector, different regimes of heat transfer in various cases are demonstrated and some of the trends obtained in parametric study are justified. The results suggest that porous block can change the Nusselt number distribution on the target plate. A more flattened Nusselt number distribution is observed with the presence of porous blocks. While lower frequencies and amplitudes of pulsation do not affect the thermal performance of the jet, higher ones have a moderate effect on the heat transfer rate of the impinging jet.

Tài liệu tham khảo

Qiu D, Wang C, Luo L, Wang S, Zhao Z, Wang Z. On heat transfer and flow characteristics of jets impinging onto a concave surface with varying jet arrangements. J Therm Anal Calorim 2019. https://doi.org/10.1007/s10973-019-08901-6. Marazani T, Madyira DM, Akinlabi ET. Investigation of the parameters governing the performance of jet impingement quick food freezing and cooling systems—a review. Procedia Manuf. 2017;8:754–60. Shukla AK, Dewan A. Flow and thermal characteristics of jet impingement: comprehensive review. Int J Heat Technol. 2017;35:153–66. Selimefendigil F, Öztop HF. Jet impingement cooling and optimization study for a partly curved isothermal surface with CuO–water nanofluid. Int Commun Heat Mass Transf. 2017;89:211–8. Selimefendigil F, Öztop HF. Analysis and predictive modeling of nanofluid-jet impingement cooling of an isothermal surface under the influence of a rotating cylinder. Int J Heat Mass Transf. 2018;121:233–45. Selimefendigil F, Öztop HF. Pulsating nanofluids jet impingement cooling of a heated horizontal surface. Int J Heat Mass Transf. 2014;69:54–65. Izadi A, Siavashi M, Xiong Q. Impingement jet hydrogen, air and CuH2O nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity. Int J Hydrog Energy. 2019;44:15933–48. Selimefendigil F, Öztop HF. Effects of nanoparticle shape on slot-jet impingement cooling of a corrugated surface with nanofluids. J Therm Sci Eng Appl. 2017;9:021016. Iio S, Takahashi K, Haneda Y, Ikeda T. Flow visualization of vortex structure in a pulsed rectangular jet. J Vis. 2008;11:125–32. Azevedo L, Webb B, Queiroz M. Pulsed air jet impingement heat transfer. Exp Therm Fluid Sci. 1994;8:206–13. Zumbrunnen D, Aziz M. Convective heat transfer enhancement due to intermittency in an impinging jet. J Heat Transf. 1993;115:91–8. Mladin E, Zumbrunnen D. Local convective heat transfer to submerged pulsating jets. Int J Heat Mass Transf. 1997;40:3305–21. Poh HJ, Kumar K, Mujumdar AS. Heat transfer from a pulsed laminar impinging jet. Int Commun Heat Mass Transf. 2005;32:1317–24. Xu P, Mujumdar AS, Poh HJ, Yu B. Heat transfer under a pulsed slot turbulent impinging jet at large temperature differences. Therm Sci. 2010;14:271–81. Xu P, Yu B, Qiu S, Poh HJ, Mujumdar AS. Turbulent impinging jet heat transfer enhancement due to intermittent pulsation. Int J Therm Sci. 2010;49:1247–52. Esmailpour K, Hosseinalipour M, Bozorgmehr B, Mujumdar AS. A numerical study of heat transfer in a turbulent pulsating impinging jet. Can J Chem Eng. 2015;93:959–69. Wilke R, Sesterhenn J. Statistics of fully turbulent impinging jets. J Fluid Mech. 2017;825:795–824. Siavashi M, Rasam H, Izadi A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J Therm Anal Calorim. 2019;135:1399–415. Joibary SMM, Siavashi M. Effect of Reynolds asymmetry and use of porous media in the counterflow double-pipe heat exchanger for passive heat transfer enhancement. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08991-2. Arasteh H, Mashayekhi R, Ghaneifar M, Toghraie D, Afrand M. Heat transfer enhancement in a counter-flow sinusoidal parallel-plate heat exchanger partially filled with porous media using metal foam in the channels’ divergent sections. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08870-w. Graminho DR, de Lemos MJ. Laminar confined impinging jet into a porous layer. Numer Heat Transf Part A Appl. 2008;54:151–77. Jeng T-M, Tzeng S-C. Experimental study of forced convection in metallic porous block subject to a confined slot jet. Int J Therm Sci. 2007;46:1242–50. Fu W-S, Huang H-C. Thermal performances of different shape porous blocks under an impinging jet. Int J Heat Mass Transf. 1997;40:2261–72. Dórea FT, De Lemos MJ. Simulation of laminar impinging jet on a porous medium with a thermal non-equilibrium model. Int J Heat Mass Transf. 2010;53:5089–101. Feng S, Kuang J, Wen T, Lu T, Ichimiya K. An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling. Int J Heat Mass Transf. 2014;77:1063–74. de Lemos MJ, Dórea FT. Simulation of a turbulent impinging jet into a layer of porous material using a two-energy equation model. Numer Heat Transf Part A Appl. 2011;59:769–98. Manca O, Cirillo L, Nardini S, Buonomo B, Ercole D. Experimental investigation on fluid dynamic and thermal behavior in confined impinging round jets in aluminum foam. Energy Procedia. 2016;101:1095–102. Saeid NH, Mohamad AA. Jet impingement cooling of a horizontal surface in a confined porous medium: mixed convection regime. Int J Heat Mass Transf. 2006;49:3906–13. Jeng T-M, Tzeng S-C. Numerical study of confined slot jet impinging on porous metallic foam heat sink. Int J Heat Mass Transf. 2005;48:4685–94. Buonomo B, Lauriat G, Manca O, Nardini S. Numerical investigation on laminar slot-jet impinging in a confined porous medium in local thermal non-equilibrium. Int J Heat Mass Transf. 2016;98:484–92. Kumar CS, Pattamatta A. Assessment of heat transfer enhancement using metallic porous foam configurations in laminar slot jet impingement: an experimental study. J Heat Transf. 2018;140:022202. Vafai K. Handbook of porous media. Boca Raton: CRC Press; 2015. Nield DA, Bejan A. Convection in porous media, vol. 3. Berlin: Springer; 2006. Landau LD, Lifshitz E. Course of theoretical physics., Vol. 6 fluid mechaniesOxford: Pergamon Press; 1959. Hooman K. Energy flux vectors as a new tool for convection visualization. Int J Numer Methods Heat Fluid Flow. 2010;20:240–9. Mahmud S, Fraser RA. Flow, thermal, and entropy generation characteristics inside a porous channel with viscous dissipation. Int J Therm Sci. 2005;44:21–32. Costa V. Bejan’s heatlines and masslines for convection visualization and analysis. Appl Mech Rev. 2006;59:126–45. Bejan A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J Appl Phys. 1996;79:1191–218. Esmailpour K, Bozorgmehr B, Hosseinalipour SM, Mujumdar AS. Entropy generation and second law analysis of pulsed impinging jet. Int J Numer Meth Heat Fluid Flow. 2015;25:1089–106.