Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size spherical particles
Tài liệu tham khảo
Ahuja, 1975, Augmentation of heat transport in laminar flow of polystyrene suspensions. i. experiments and results, J. Appl. Phys., 46, 3408, 10.1063/1.322107
Ardekani, 2018, Heat transfer in laminar couette flow laden with rigid spherical particles, J. Fluid Mech., 834, 308, 10.1017/jfm.2017.709
Ardekani, 2016, Numerical study of the sedimentation of spheroidal particles, Int. J. Multiphase Flow, 87, 16, 10.1016/j.ijmultiphaseflow.2016.08.005
Ardekani, 2017, Drag reduction in turbulent channel flow laden with finite-size oblate spheroids, J. Fluid Mech., 816, 43, 10.1017/jfm.2017.68
Avila, 1995, Analysis of the heat transfer coefficient in a turbulent particle pipe flow, Int. J. Heat Mass Transf., 38, 1923, 10.1016/0017-9310(94)00321-L
Breugem, 2012, A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows, J. Comput. Phys., 231, 4469, 10.1016/j.jcp.2012.02.026
Breugem, 2014, Flows through real porous media: x-ray computed tomography, experiments, and numerical simulations, J. Fluids Eng., 136, 040902, 10.1115/1.4025311
Brown, 2009, Dynamic jamming point for shear thickening suspensions, Phys. Rev. Lett., 103, 086001, 10.1103/PhysRevLett.103.086001
Bu, 2013, Modeling and coupling particle scale heat transfer with dem through heat transfer mechanisms, Numer. Heat Transf. Part A, 64, 56, 10.1080/10407782.2013.772864
Chang, 2011, A particle-to-particle heat transfer model for dense gas–solid fluidized bed of binary mixture, Chem. Eng. Res. Des., 89, 894, 10.1016/j.cherd.2010.08.004
Costa, 2015, Collision model for fully resolved simulations of flows laden with finite-size particles, Phys. Rev. E, 92, 053012, 10.1103/PhysRevE.92.053012
Costa, 2016, Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows, Phys. Rev. Lett., 117, 134501, 10.1103/PhysRevLett.117.134501
Eshghinejadfard, 2017, Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study, AIP Advances, 7, 095007, 10.1063/1.5002528
Fischer, P. F., Lottes, J. W., Kerkemeier, S. G., et al., 2008. nek5000 web page, 2008. URL http.
Guazzelli, 2011, 45
Guha, 2008, Transport and deposition of particles in turbulent and laminar flow, Annu. Rev. Fluid Mech., 40, 311, 10.1146/annurev.fluid.40.111406.102220
Hampton, 1997, Migration of particles undergoing pressure-driven flow in a circular conduit, J. Rheol. (1978-present), 41, 621, 10.1122/1.550863
Hetsroni, 2002, Effect of coarse particles on the heat transfer in a particle-laden turbulent boundary layer, Int. J.Multiphase Flow, 28, 1873, 10.1016/S0301-9322(02)00122-2
Hirt, 1981, Volume of fluid (vof) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201, 10.1016/0021-9991(81)90145-5
Hood, 2015, Inertial migration of a rigid sphere in three-dimensional poiseuille flow, J. Fluid Mech., 765, 452, 10.1017/jfm.2014.739
Incropera, 2007
Jeffrey, 1982, Low-reynolds-number flow between converging spheres, J. Fluid Mech.
Kajishima, 2001, Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding, JSME Int. J. Series B Fluids Thermal Eng., 44, 526, 10.1299/jsmeb.44.526
Kempe, 2012, An improved immersed boundary method with direct forcing for the simulation of particle laden flows, J. Comput. Phys., 231, 3663, 10.1016/j.jcp.2012.01.021
Kuerten, 2011, Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow, Phys. Fluids, 23, 123301, 10.1063/1.3663308
Kulkarni, 2008, Suspension properties at finite Reynolds number from simulated shear flow, Phys. Fluids (1994-present), 20, 040602, 10.1063/1.2911017
Lambert, 2013, Active suspensions in thin films: nutrient uptake and swimmer motion, J. Fluid Mech., 733, 528, 10.1017/jfm.2013.459
Lashgari, 2017, Inertial migration of spherical and oblate particles in straight ducts, J. Fluid Mech., 819, 540, 10.1017/jfm.2017.189
Lashgari, 2015, Transition and self-sustained turbulence in dilute suspensions of finite-size particles, Theor. Appl. Mech. Lett., 5, 121, 10.1016/j.taml.2015.04.004
Lashgari, 2014, Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions, Phys. Rev. Lett., 113, 254502, 10.1103/PhysRevLett.113.254502
Lashgari, 2016, Channel flow of rigid sphere suspensions: particle dynamics in the inertial regime, Int. J. Multiphase Flow, 78, 12, 10.1016/j.ijmultiphaseflow.2015.09.008
Liu, 2017, Characteristics of turbulence transport for momentum and heat in particle-laden turbulent vertical channel flows, Acta Mechanica Sinica, 1
Liu, 1994, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200, 10.1006/jcph.1994.1187
Loisel, 2013, The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime, Phys. Fluids (1994-present), 25, 123304, 10.1063/1.4848856
Matas, 2003, Transition to turbulence in particulate pipe flow, Phys. Rev. Lett., 90, 014501, 10.1103/PhysRevLett.90.014501
Metzger, 2013, Heat transfer across sheared suspensions: role of the shear-induced diffusion, J. Fluid Mech., 724, 527, 10.1017/jfm.2013.173
Namburu, 2009, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Thermal Sci., 48, 290, 10.1016/j.ijthermalsci.2008.01.001
Naso, 2010, The interaction between a solid particle and a turbulent flow, New J. Phys., 12, 033040, 10.1088/1367-2630/12/3/033040
Noorani, 2013, Evolution of turbulence characteristics from straight to curved pipes, Int. J. Heat Fluid Flow, 41, 16, 10.1016/j.ijheatfluidflow.2013.03.005
Picano, 2015, Turbulent channel flow of dense suspensions of neutrally buoyant spheres, J. Fluid Mech., 764, 463, 10.1017/jfm.2014.704
Picano, 2013, Shear thickening in non-brownian suspensions: an excluded volume effect, Phys.Rev. Lett., 111, 098302, 10.1103/PhysRevLett.111.098302
Roma, 1999, An adaptive version of the immersed boundary method, J. Comput. Phys., 153, 509, 10.1006/jcph.1999.6293
Shin, 2000, Thermal conductivity of suspensions in shear flow fields, Int. J. Heat Mass Transf., 43, 4275, 10.1016/S0017-9310(00)00050-8
Ström, 2013, A multiphase dns approach for handling solid particles motion with heat transfer, Int. J. Multiphase Flow, 53, 75, 10.1016/j.ijmultiphaseflow.2013.01.007
Uhlmann, 2005, An immersed boundary method with direct forcing for simulation of particulate flow, J. Comput. Phys., 209, 448, 10.1016/j.jcp.2005.03.017
Wesseling, 2009, 29
Yeo, 2011, Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow, J. Fluid Mech., 682, 491, 10.1017/jfm.2011.241
Yu, 2013, Numerical studies of the effects of large neutrally buoyant particles on the flow instability and transition to turbulence in pipe flow, Phys. Fluids (1994-present), 25, 043305, 10.1063/1.4802040
Zonta, 2008, Direct numerical simulation of turbulent heat transfer modulation in micro-dispersed channel flow, Acta Mechanica, 195, 305, 10.1007/s00707-007-0552-7