Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size spherical particles

International Journal of Heat and Fluid Flow - Tập 71 - Trang 189-199 - 2018
Mehdi Niazi Ardekani1, Léa Al Asmar2, Francesco Picano3, Luca Brandt1
1Linné Flow Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics, Stockholm, SE-10044, Sweden
2Engineering Department, Sorbonne Universités, UPMC Univ Paris 06, UFR 919, Paris, F-75005, France
3Department of Industrial Engineering, University of Padova, Via Venezia 1, Padua, 35131, Italy

Tài liệu tham khảo

Ahuja, 1975, Augmentation of heat transport in laminar flow of polystyrene suspensions. i. experiments and results, J. Appl. Phys., 46, 3408, 10.1063/1.322107 Ardekani, 2018, Heat transfer in laminar couette flow laden with rigid spherical particles, J. Fluid Mech., 834, 308, 10.1017/jfm.2017.709 Ardekani, 2016, Numerical study of the sedimentation of spheroidal particles, Int. J. Multiphase Flow, 87, 16, 10.1016/j.ijmultiphaseflow.2016.08.005 Ardekani, 2017, Drag reduction in turbulent channel flow laden with finite-size oblate spheroids, J. Fluid Mech., 816, 43, 10.1017/jfm.2017.68 Avila, 1995, Analysis of the heat transfer coefficient in a turbulent particle pipe flow, Int. J. Heat Mass Transf., 38, 1923, 10.1016/0017-9310(94)00321-L Breugem, 2012, A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows, J. Comput. Phys., 231, 4469, 10.1016/j.jcp.2012.02.026 Breugem, 2014, Flows through real porous media: x-ray computed tomography, experiments, and numerical simulations, J. Fluids Eng., 136, 040902, 10.1115/1.4025311 Brown, 2009, Dynamic jamming point for shear thickening suspensions, Phys. Rev. Lett., 103, 086001, 10.1103/PhysRevLett.103.086001 Bu, 2013, Modeling and coupling particle scale heat transfer with dem through heat transfer mechanisms, Numer. Heat Transf. Part A, 64, 56, 10.1080/10407782.2013.772864 Chang, 2011, A particle-to-particle heat transfer model for dense gas–solid fluidized bed of binary mixture, Chem. Eng. Res. Des., 89, 894, 10.1016/j.cherd.2010.08.004 Costa, 2015, Collision model for fully resolved simulations of flows laden with finite-size particles, Phys. Rev. E, 92, 053012, 10.1103/PhysRevE.92.053012 Costa, 2016, Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows, Phys. Rev. Lett., 117, 134501, 10.1103/PhysRevLett.117.134501 Eshghinejadfard, 2017, Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study, AIP Advances, 7, 095007, 10.1063/1.5002528 Fischer, P. F., Lottes, J. W., Kerkemeier, S. G., et al., 2008. nek5000 web page, 2008. URL http. Guazzelli, 2011, 45 Guha, 2008, Transport and deposition of particles in turbulent and laminar flow, Annu. Rev. Fluid Mech., 40, 311, 10.1146/annurev.fluid.40.111406.102220 Hampton, 1997, Migration of particles undergoing pressure-driven flow in a circular conduit, J. Rheol. (1978-present), 41, 621, 10.1122/1.550863 Hetsroni, 2002, Effect of coarse particles on the heat transfer in a particle-laden turbulent boundary layer, Int. J.Multiphase Flow, 28, 1873, 10.1016/S0301-9322(02)00122-2 Hirt, 1981, Volume of fluid (vof) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201, 10.1016/0021-9991(81)90145-5 Hood, 2015, Inertial migration of a rigid sphere in three-dimensional poiseuille flow, J. Fluid Mech., 765, 452, 10.1017/jfm.2014.739 Incropera, 2007 Jeffrey, 1982, Low-reynolds-number flow between converging spheres, J. Fluid Mech. Kajishima, 2001, Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding, JSME Int. J. Series B Fluids Thermal Eng., 44, 526, 10.1299/jsmeb.44.526 Kempe, 2012, An improved immersed boundary method with direct forcing for the simulation of particle laden flows, J. Comput. Phys., 231, 3663, 10.1016/j.jcp.2012.01.021 Kuerten, 2011, Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow, Phys. Fluids, 23, 123301, 10.1063/1.3663308 Kulkarni, 2008, Suspension properties at finite Reynolds number from simulated shear flow, Phys. Fluids (1994-present), 20, 040602, 10.1063/1.2911017 Lambert, 2013, Active suspensions in thin films: nutrient uptake and swimmer motion, J. Fluid Mech., 733, 528, 10.1017/jfm.2013.459 Lashgari, 2017, Inertial migration of spherical and oblate particles in straight ducts, J. Fluid Mech., 819, 540, 10.1017/jfm.2017.189 Lashgari, 2015, Transition and self-sustained turbulence in dilute suspensions of finite-size particles, Theor. Appl. Mech. Lett., 5, 121, 10.1016/j.taml.2015.04.004 Lashgari, 2014, Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions, Phys. Rev. Lett., 113, 254502, 10.1103/PhysRevLett.113.254502 Lashgari, 2016, Channel flow of rigid sphere suspensions: particle dynamics in the inertial regime, Int. J. Multiphase Flow, 78, 12, 10.1016/j.ijmultiphaseflow.2015.09.008 Liu, 2017, Characteristics of turbulence transport for momentum and heat in particle-laden turbulent vertical channel flows, Acta Mechanica Sinica, 1 Liu, 1994, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200, 10.1006/jcph.1994.1187 Loisel, 2013, The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime, Phys. Fluids (1994-present), 25, 123304, 10.1063/1.4848856 Matas, 2003, Transition to turbulence in particulate pipe flow, Phys. Rev. Lett., 90, 014501, 10.1103/PhysRevLett.90.014501 Metzger, 2013, Heat transfer across sheared suspensions: role of the shear-induced diffusion, J. Fluid Mech., 724, 527, 10.1017/jfm.2013.173 Namburu, 2009, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Thermal Sci., 48, 290, 10.1016/j.ijthermalsci.2008.01.001 Naso, 2010, The interaction between a solid particle and a turbulent flow, New J. Phys., 12, 033040, 10.1088/1367-2630/12/3/033040 Noorani, 2013, Evolution of turbulence characteristics from straight to curved pipes, Int. J. Heat Fluid Flow, 41, 16, 10.1016/j.ijheatfluidflow.2013.03.005 Picano, 2015, Turbulent channel flow of dense suspensions of neutrally buoyant spheres, J. Fluid Mech., 764, 463, 10.1017/jfm.2014.704 Picano, 2013, Shear thickening in non-brownian suspensions: an excluded volume effect, Phys.Rev. Lett., 111, 098302, 10.1103/PhysRevLett.111.098302 Roma, 1999, An adaptive version of the immersed boundary method, J. Comput. Phys., 153, 509, 10.1006/jcph.1999.6293 Shin, 2000, Thermal conductivity of suspensions in shear flow fields, Int. J. Heat Mass Transf., 43, 4275, 10.1016/S0017-9310(00)00050-8 Ström, 2013, A multiphase dns approach for handling solid particles motion with heat transfer, Int. J. Multiphase Flow, 53, 75, 10.1016/j.ijmultiphaseflow.2013.01.007 Uhlmann, 2005, An immersed boundary method with direct forcing for simulation of particulate flow, J. Comput. Phys., 209, 448, 10.1016/j.jcp.2005.03.017 Wesseling, 2009, 29 Yeo, 2011, Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow, J. Fluid Mech., 682, 491, 10.1017/jfm.2011.241 Yu, 2013, Numerical studies of the effects of large neutrally buoyant particles on the flow instability and transition to turbulence in pipe flow, Phys. Fluids (1994-present), 25, 043305, 10.1063/1.4802040 Zonta, 2008, Direct numerical simulation of turbulent heat transfer modulation in micro-dispersed channel flow, Acta Mechanica, 195, 305, 10.1007/s00707-007-0552-7