Numerical study of free-fall arches in hopper flows
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beverloo, 1961, The flow of granular solids through orifices, Chem. Eng. Sci., 15, 260, 10.1016/0009-2509(61)85030-6
Nedderman, 1982, The flow of granular-materials. 1. Discharge rates from hoppers, Chem. Eng. Sci., 37, 1597, 10.1016/0009-2509(82)80029-8
Johnson, 1987
Hirshfeld, 1997, Molecular dynamics studies of granular flow through an aperture, Phys. Rev. E, 56, 4404, 10.1103/PhysRevE.56.4404
Mankoc, 2007, The flow rate of granular materials through an orifice, Granular Matter, 9, 407, 10.1007/s10035-007-0062-2
Hilton, 2011, Granular flow during hopper discharge, Phys. Rev. E, 84, 011307, 10.1103/PhysRevE.84.011307
Sun, 2013, Radial hopper flow prediction using a constitutive model with microstructure evolution, Powder Technol., 242, 81, 10.1016/j.powtec.2013.01.013
Hirshfeld, 2001, Granular flow from a silo: discrete-particle simulations in three dimensions, Eur. Phys. J. E, 4, 193, 10.1007/s101890170128
Srivastava, 2003, Analysis of a frictional–kinetic model for gas–particle flow, Powder Technol., 129, 72, 10.1016/S0032-5910(02)00132-8
Myers, 1978
Anand, 2009, Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM), Chem. Eng. Sci., 64, 5268, 10.1016/j.ces.2009.09.001
Janda, 2012, Flow rate of particles through apertures obtained from self-similar density and velocity profiles, Phys. Rev. Lett., 108, 248001, 10.1103/PhysRevLett.108.248001
Hagen, 1852, Druck und Bewegung des trockenen Sandes, 35
Tighe, 2007, Pressure and motion of dry sand: translation of Hagen’s paper from 1852, Granular Matter, 9, 141, 10.1007/s10035-006-0027-x
Brown, 1961, Minimum energy theorem for flow of dry granules through apertures, Nature, 191, 458, 10.1038/191458a0
Brown, 1965, Kinematics of the flow of dry powders and bulk solids, Rheol. Acta, 4, 153, 10.1007/BF01969251
Brown, 1970
Le Pennec, 1996, Ticking hour glasses: experimental analysis of intermittent flow, Phys. Rev. E, 53, 2257, 10.1103/PhysRevE.53.2257
Barletta, 2003, On the role and the origin of the gas pressure gradient in the discharge of fine solids from hoppers, Chem. Eng. Sci., 58, 5269, 10.1016/j.ces.2003.08.022
Oldal, 2012, Outflow properties of silos: the effect of arching, Adv. Powder Technol., 23, 290, 10.1016/j.apt.2011.03.013
Sheldon, 2010, Granular discharge and clogging for tilted hoppers, Granular Matter, 12, 579, 10.1007/s10035-010-0198-3
Anand, 2008, Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM), Chem. Eng. Sci., 63, 5821, 10.1016/j.ces.2008.08.015
Wu, 2008, A modified kinematic model for particle flow in moving beds, Powder Technol., 181, 74, 10.1016/j.powtec.2007.06.014
Vivanco, 2012, Dynamical arching in a two dimensional granular flow, Granular Matter, 14, 563, 10.1007/s10035-012-0359-7
Veje, 1996, Two-dimensional granular flow in a small-angle funnel, Phys. Rev. E, 54, 4329, 10.1103/PhysRevE.54.4329
Cundall, 1980, A discrete numerical-model for granular assemblies—reply, Geotechnique, 30, 335, 10.1680/geot.1980.30.3.331
Tao, 2010, Discrete element method modeling of non-spherical granular flow in rectangular hopper, Chem. Eng. Process., 49, 151, 10.1016/j.cep.2010.01.006
Yu, 2011, Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres, Adv. Powder Technol., 22, 324, 10.1016/j.apt.2010.04.003
Nakashima, 2011, Determining the angle of repose of sand under low-gravity conditions using discrete element method, J. Terramech., 48, 17, 10.1016/j.jterra.2010.09.002
Mio, 2012, Development of particle flow simulator in charging process of blast furnace by discrete element method, Miner. Eng., 33, 27, 10.1016/j.mineng.2012.01.002
Allen, 1989
Landry, 2004, Discrete element simulations of stress distributions in silos: crossover from two to three dimensions, Powder Technol., 139, 233, 10.1016/j.powtec.2003.10.016
Qi, 2014, GPU-accelerated DEM implementation with CUDA, Int. J. Comput. Sci. Eng. Inderscience
Perry, 1976, Model studies of mass-flow bunkers II. Velocity distributions in the discharge of solids from mass-flow bunkers, Powder Technol., 14, 81, 10.1016/0032-5910(76)80010-1
Sielamowicz, 2005, Optical technique DPIV in measurements of granular material flows, part 1 of 3—plane hoppers, Chem. Eng. Sci., 60, 589, 10.1016/j.ces.2004.07.135
Yang, 2012, Mechanism analysis of quasi-static dense pebble flow in pebble bed reactor using phenomenological approach, Nucl. Eng. Des., 250, 247, 10.1016/j.nucengdes.2012.06.011
Rycroft, 2007
Balevicius, 2011, Investigation of wall stress and outflow rate in a flat-bottomed bin: a comparison of the DEM model results with the experimental measurements, Powder Technol., 214, 322, 10.1016/j.powtec.2011.08.042
Masson, 2000, Effect of particle mechanical properties on silo flow and stresses from distinct element simulations, Powder Technol., 109, 164, 10.1016/S0032-5910(99)00234-X
Balevicius, 2007, Microscopic and macroscopic analysis of granular material behaviour in 3D flat-bottomed hopper by the discrete element method, Arch. Mech., 59, 231