Numerical study of free-fall arches in hopper flows

Ping Lin1, ShengNan Zhang1,2, Jing Qi1, Y. M. Xing1,2, Lei Yang1
1Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, 730000 Lanzhou, China
2University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049 Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beverloo, 1961, The flow of granular solids through orifices, Chem. Eng. Sci., 15, 260, 10.1016/0009-2509(61)85030-6

Nedderman, 1982, The flow of granular-materials. 1. Discharge rates from hoppers, Chem. Eng. Sci., 37, 1597, 10.1016/0009-2509(82)80029-8

Johnson, 1987

Hirshfeld, 1997, Molecular dynamics studies of granular flow through an aperture, Phys. Rev. E, 56, 4404, 10.1103/PhysRevE.56.4404

Mankoc, 2007, The flow rate of granular materials through an orifice, Granular Matter, 9, 407, 10.1007/s10035-007-0062-2

Hilton, 2011, Granular flow during hopper discharge, Phys. Rev. E, 84, 011307, 10.1103/PhysRevE.84.011307

Sun, 2013, Radial hopper flow prediction using a constitutive model with microstructure evolution, Powder Technol., 242, 81, 10.1016/j.powtec.2013.01.013

Hirshfeld, 2001, Granular flow from a silo: discrete-particle simulations in three dimensions, Eur. Phys. J. E, 4, 193, 10.1007/s101890170128

Srivastava, 2003, Analysis of a frictional–kinetic model for gas–particle flow, Powder Technol., 129, 72, 10.1016/S0032-5910(02)00132-8

Myers, 1978

Anand, 2009, Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM), Chem. Eng. Sci., 64, 5268, 10.1016/j.ces.2009.09.001

Janda, 2012, Flow rate of particles through apertures obtained from self-similar density and velocity profiles, Phys. Rev. Lett., 108, 248001, 10.1103/PhysRevLett.108.248001

Hagen, 1852, Druck und Bewegung des trockenen Sandes, 35

Tighe, 2007, Pressure and motion of dry sand: translation of Hagen’s paper from 1852, Granular Matter, 9, 141, 10.1007/s10035-006-0027-x

Brown, 1961, Minimum energy theorem for flow of dry granules through apertures, Nature, 191, 458, 10.1038/191458a0

Brown, 1965, Kinematics of the flow of dry powders and bulk solids, Rheol. Acta, 4, 153, 10.1007/BF01969251

Brown, 1970

Le Pennec, 1996, Ticking hour glasses: experimental analysis of intermittent flow, Phys. Rev. E, 53, 2257, 10.1103/PhysRevE.53.2257

Barletta, 2003, On the role and the origin of the gas pressure gradient in the discharge of fine solids from hoppers, Chem. Eng. Sci., 58, 5269, 10.1016/j.ces.2003.08.022

Oldal, 2012, Outflow properties of silos: the effect of arching, Adv. Powder Technol., 23, 290, 10.1016/j.apt.2011.03.013

Sheldon, 2010, Granular discharge and clogging for tilted hoppers, Granular Matter, 12, 579, 10.1007/s10035-010-0198-3

Anand, 2008, Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM), Chem. Eng. Sci., 63, 5821, 10.1016/j.ces.2008.08.015

Wu, 2008, A modified kinematic model for particle flow in moving beds, Powder Technol., 181, 74, 10.1016/j.powtec.2007.06.014

Vivanco, 2012, Dynamical arching in a two dimensional granular flow, Granular Matter, 14, 563, 10.1007/s10035-012-0359-7

Veje, 1996, Two-dimensional granular flow in a small-angle funnel, Phys. Rev. E, 54, 4329, 10.1103/PhysRevE.54.4329

Cundall, 1980, A discrete numerical-model for granular assemblies—reply, Geotechnique, 30, 335, 10.1680/geot.1980.30.3.331

Tao, 2010, Discrete element method modeling of non-spherical granular flow in rectangular hopper, Chem. Eng. Process., 49, 151, 10.1016/j.cep.2010.01.006

Yu, 2011, Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres, Adv. Powder Technol., 22, 324, 10.1016/j.apt.2010.04.003

Nakashima, 2011, Determining the angle of repose of sand under low-gravity conditions using discrete element method, J. Terramech., 48, 17, 10.1016/j.jterra.2010.09.002

Mio, 2012, Development of particle flow simulator in charging process of blast furnace by discrete element method, Miner. Eng., 33, 27, 10.1016/j.mineng.2012.01.002

Allen, 1989

Landry, 2004, Discrete element simulations of stress distributions in silos: crossover from two to three dimensions, Powder Technol., 139, 233, 10.1016/j.powtec.2003.10.016

Qi, 2014, GPU-accelerated DEM implementation with CUDA, Int. J. Comput. Sci. Eng. Inderscience

Perry, 1976, Model studies of mass-flow bunkers II. Velocity distributions in the discharge of solids from mass-flow bunkers, Powder Technol., 14, 81, 10.1016/0032-5910(76)80010-1

Sielamowicz, 2005, Optical technique DPIV in measurements of granular material flows, part 1 of 3—plane hoppers, Chem. Eng. Sci., 60, 589, 10.1016/j.ces.2004.07.135

Yang, 2012, Mechanism analysis of quasi-static dense pebble flow in pebble bed reactor using phenomenological approach, Nucl. Eng. Des., 250, 247, 10.1016/j.nucengdes.2012.06.011

Rycroft, 2007

Balevicius, 2011, Investigation of wall stress and outflow rate in a flat-bottomed bin: a comparison of the DEM model results with the experimental measurements, Powder Technol., 214, 322, 10.1016/j.powtec.2011.08.042

Masson, 2000, Effect of particle mechanical properties on silo flow and stresses from distinct element simulations, Powder Technol., 109, 164, 10.1016/S0032-5910(99)00234-X

Balevicius, 2007, Microscopic and macroscopic analysis of granular material behaviour in 3D flat-bottomed hopper by the discrete element method, Arch. Mech., 59, 231