Numerical study of developing laminar forced convection of a nanofluid in an annulus
Tài liệu tham khảo
Maxwell, 1873
Choi, 1995, Enhancing thermal conductivity of fluid with nanoparticles, developments and applications of non-Newtonian flow, ASME, FED 231/MD 66, 99
Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf., 121, 280, 10.1115/1.2825978
Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersions of -Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei (Japan), 4, 227, 10.2963/jjtp.7.227
Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3
Xuan, 2000, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf., 43, 3701, 10.1016/S0017-9310(99)00369-5
Keblinski, 2002, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluid), Int. J. Heat Mass Transf., 45, 855, 10.1016/S0017-9310(01)00175-2
Wang, 1999, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Transf., 13, 474, 10.2514/2.6486
Choi, 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252, 10.1063/1.1408272
Zhang, 2007, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Exp. Therm. Fluid Sci., 31, 593, 10.1016/j.expthermflusci.2006.06.009
Xue, 2003, Model for effective thermal conductivity of nanofluids, Phys. Lett. A, 307, 313, 10.1016/S0375-9601(02)01728-0
Xuan, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420
Jang, 2004, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684
Chon, 2005, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 87, 1, 10.1063/1.2093936
N. Sohrabi, Modeling effective thermal conductivity coefficient of nanofluids using two phase model. MSc Thesis, University of Sistan and Baluchestan, 2008.
Li, 2007, The effect of particles size on the effective thermal conductivity of Al2O3-water nanofluids, J. Appl. Phys., 101, 044312, 10.1063/1.2436472
Mintsa, 2009, New temperature dependent thermal conductivity data for water based nanofluids, Int. J. Therm. Sci., 48, 363, 10.1016/j.ijthermalsci.2008.03.009
Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11, 151, 10.1080/08916159808946559
Xuan, 2003, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transf., 125, 151, 10.1115/1.1532008
U. Rea, T. McKrell, L. Hu, J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int. J. Heat Mass Transf., doi:10.1016/j.ijheatmasstransfer. 2008.10.025.
Li, 2008, Thermal performance of nanofluid flow in microchannels, Int. J. Heat Fluid Flow, 29, 1221, 10.1016/j.ijheatfluidflow.2008.01.005
A.K. Santra, N. Chakraborty, S. Sen, Prediction of heat transfer due to presence of copper–water nanofluid using resilient-propagation neural network. Int. G. Therm. Sci., doi:10.1016/j.ijthermalsci.2008.11.009.
Mirmasoumi, 2008, Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, Int. J. Heat Fluid Flow, 29, 557, 10.1016/j.ijheatfluidflow.2007.11.007
Nnanna, 2009, Assessment of thermoelectric module with nanofluid heat exchanger, Appl. Therm. Eng., 29, 491, 10.1016/j.applthermaleng.2008.03.007
Nguyen, 2007, Heat transfer enhancement using Al2O3 water nanofluid for an electronic liquid cooling system, Appl. Therm. Eng., 27, 1501, 10.1016/j.applthermaleng.2006.09.028
Khanafer, 2003, Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transf., 46, 3639, 10.1016/S0017-9310(03)00156-X
Koo, 2005, Laminar nanofluid flow in microheat-sinks, Int. J. Heat Mass Transf., 48, 2652, 10.1016/j.ijheatmasstransfer.2005.01.029
Akbari, 2008, Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid, Int. J. Heat Fluid Flow, 29, 545, 10.1016/j.ijheatfluidflow.2007.11.006
Akbarinia, 2007, Numerical study of laminar mixed convection of a nanofluid in a horizontal curved tube, Appl. Therm. Eng., 27, 1327, 10.1016/j.applthermaleng.2006.10.034
Ding, 2005, Particle migration in a flow of nanoparticle suspensions, Powder Technol., 149, 84, 10.1016/j.powtec.2004.11.012
Srivastava, 1973, An investigation into thermal boundary layer growth in the entrance region of an annulus, Int. J. Heat Mass Transf., 14, 49, 10.1016/0017-9310(73)90250-0
Gupta, 1981, Developing flow in a concentric annulus, Comput. Meth. Appl. Mech., 28, 27, 10.1016/0045-7825(81)90024-4
El-Shaarawiy, 1992, Transient forced convection in the entrance region of concentric annuli, Int. J. Heat Mass Transf., 35, 3335, 10.1016/0017-9310(92)90220-M
Lu, 2008, Experimental investigation on heat transfer characteristics of water flow in a narrow annulus, Appl. Therm. Eng., 28, 8, 10.1016/j.applthermaleng.2007.03.019
Putra, 2003, Natural convection of nano fluids, J. Heat Mass Transf., 39, 775, 10.1007/s00231-002-0382-z
Daungthongsuk, 2007, A critical review of convective heat transfer of nanofluids, Renew. Sustain. Energ. Rev., 11, 797, 10.1016/j.rser.2005.06.005
Zhou, 2008, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Appl. Phys. Lett., 92, 093123, 10.1063/1.2890431
Masoumi, 2009, A new model for calculating the effective viscosity of nanofluids, J. Phys. D Appl. Phys., 42, 055501, 10.1088/0022-3727/42/5/055501
Kays, 2004