Numerical solutions for solving a class of fractional optimal control problems via fixed-point approach

Springer Science and Business Media LLC - Tập 74 Số 4 - Trang 585-603 - 2017
Samaneh Soradi Zeid1, Ali Vahidian Kamyad1, Sohrab Effati1, Soleiman Hosseinpour2
1Department of Mathematics, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
2Department of Mathematics, Shahrood University, Shahrood, Iran#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrawal, O.P.: General formulation for the numerical solution of optimal control problems. Int. J. Control 50, 627–638 (1989)

Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1–4), 323–337 (2004)

Agrawal, O.P.: A quadratic numerical scheme for fractional optimal control problems. J. Dyn. Syst. Meas. Control 130(1), 011010 (2008a)

Agrawal, O.P.: A formulation and numerical scheme for fractional optimal control problems. J. Vibr. Control 14(9–10), 1291–1299 (2008b)

Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vibr. Control 13(9–10), 1269–1281 (2007)

Alipour, M., Rostamy, D., Baleanu, D.: Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. J. Vibr. Control 19(16), 2523–2540 (2013)

Almeida, R., Pooseh, S., Torres, D.F.M.: Computational Methods in the Fractional Calculus of Variations. Imperial College Press, London (2015)

Almeida, R., Torres, D.F.: A discrete method to solve fractional optimal control problems. Nonlinear Dyn. 80(4), 1811–1816 (2014)

Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53, 67–74 (2008)

Baleanu, D., Defterli, O., Agrawal, O.P.: A central difference numerical scheme for fractional optimal control problems. J. Vibr. Control 15(4), 583–597 (2009)

Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S., Abdelkawy, M.A.: An accurate numerical technique for solving fractional optimal control problems. Differ. Equ. 15, 23 (2015)

Blank, L.: Numerical Treatment of Differential Equations of Fractional Order. University of Manchester, Manchester (1996)

Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vibr. Control 14(9–10), 1487–1498 (2008)

Dehghan, M., Hamedi, E.A., Khosravian-Arab, H.: A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials. J. Vibr. Control 22(6), 1547–1559 (2014)

Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5(1), 1–6 (1997)

Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)

Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

Diethelm, K., Ford, N.J.: Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 154(3), 621–640 (2004)

Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S., Hafez, R.M.: An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems. Adv. Differ. Equ. 2015(1), 1–17 (2015)

Esmaeili, S., Shamsi, M., Luchko, Y.: Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. Comput. Math. Appl. 62(3), 918–929 (2011)

Ezz-Eldien, S.S., Doha, E.H., Baleanu, D., Bhrawy, A.H.: A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems. J. Vibr. Control (2015)

Ghandehari, M.A.M., Ranjbar, M.: A numerical method for solving a fractional partial differential equation through converting it into an NLP problem. Comput. Math. Appl. 65(7), 975–982 (2013)

Guo, T.L.: The necessary conditions of fractional optimal control in the sense of Caputo. J. Optim. Theory Appl. 156(1), 115–126 (2013)

Hosseinpour, S., Nazemi, A.: Solving fractional optimal control problems with fixed or free final states by Haar wavelet collocation method. IMA J. Math. Control Inf. (2015)

Jafari, H., Seifi, S.: Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2006–2012 (2009)

Kamocki, R.: On the existence of optimal solutions to fractional optimal control problems. Appl. Math. Comput. 235, 94–104 (2014)

Konguetsof, A., Simos, T.E.: On the construction of exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Comput. Meth. Sci. Eng. 1(1), 143–160 (2001)

Kosmatove, N.: Integral equations and initial value problems for nonlinear differential equations of fractional order. Nonlinear Anal. 70, 252–2529 (2009)

Kumar, P., Agrawal, O.P.: An approximate method for numerical solution of fractional differential equations. Signal Process. 86(10), 2602–2610 (2006)

Li, C., Deng, W., Zhao, L.: Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations (2015). arXiv:1501.00376

Li, C., Zeng, F.: Numerical Methods for Fractional Calculus, vol. 24. CRC Press, New York (2015)

Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177(2), 488–494 (2006)

Momani, S., Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solit. Fract. 31(5), 1248–1255 (2007a)

Momani, S., Odibat, Z., Erturk, V.S.: Generalized differential transform method for solving a space-and time-fractional diffusion-wave equation. Phys. Lett. A 370(5), 379–387 (2007b)

Momani, S., Odibat, Z.: A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor’s formula. J. Comput. Appl. Math. 220(1), 85–95 (2008)

Oldham, K.B.: The Fractional Calculus. Elsevier, Amsterdam (1974)

Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation (2001). arXiv:math/0110241 [math.CA]

Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, New York (1998)

Pooseh, S., Almeida, R., Torres, D.F.: Fractional order optimal control problems with free terminal time. J. Ind. Manag. Optim. 10(2), 363–381 (2014)

Rakhshan, S.A., Kamyad, A.V., Effati, S.: An efficient method to solve a fractional differential equation by using linear programming and its application to an optimal control problem. J. Vibr. Control (2015)

Samko, S.G., Kilbas, A.A., Marichev, O.I.: Integrals and Derivatives of Fractional Order and Some of Their Applications. Gordon and Breach, London (1987)

Simos, T.E., Williams, P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23(6), 513–554 (1999)

Sun, J.X.: Nonlinear Functional Analysis and its Application. Science Press, Beijin (2008)

Tohidi, E., Nik, H.S.: A Bessel collocation method for solving fractional optimal control problems. Appl. Math. Model. 39(2), 455–465 (2015)

Tricaud, C., Chen, Y.: An approximate method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl. 59(5), 1644–1655 (2010a)

Tricaud, C., Chen, Y.: Time-optimal control of systems with fractional dynamics. Int. J. Differ. Equ. (2010b)

Yousefi, S.A., Lotfi, A., Dehghan, M.: The use of a Legendre multi wavelet collocation method for solving the fractional optimal control problems. J. Vibr. Control 17(13), 2059–2065 (2011)

Zamani, M., Karimi-Ghartemani, M., Sadati, N.: FOPID controller design for robust performance using particle swarm optimization. Fract. Calcul. Appl. Anal. 10(2), 169–187 (2007)

Zhang, S.: Positive solutions for boundary value problems of nonlinear fractional differential euations. Electron. J. Differ. Equ. 6, 1–12 (2006)