Numerical solution of stochastic integral equations by using Bernoulli operational matrix
Tài liệu tham khảo
Abadon, 2003, Fredholm-Volterra integral equation with singular kernel, App. Math. Comput., 137, 231, 10.1016/S0096-3003(02)00046-2
Abramowitz, 1972
Akyuz-Dascioglu, 2011, A Chebychev polynomial approach for linear Fredholm-Volterra integro-differential equations in most general form, Appl. Math. Comput. Sci., 3
Aleman, 2012, The eigenfunctions of the Hilbert matrix, 353
Arnold, 1974
Asari, 2014, Numerical solution of nonlinear stochastic integral equations by stochastic operational matrix based on Bernstein polynomials, Bull. Math. Soc. Sci. Math. Roumanie., 57, 3
Babolian, 2008, Direct method to solve volterra integral equation of the first kind using operational matrix with block-pulse functions, J. Comput. Appl. Math., 220, 51, 10.1016/j.cam.2007.07.029
Balachandran, 2010, Existence of solutions on nonlinear stochastic volterra fredholm integral equations of mixed type, Int. J. Math. Math. Sci., 10.1155/2010/603819
Bazm, 2015, Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations, J. Comput. Appl. Math., 275, 44, 10.1016/j.cam.2014.07.018
Bhrawy, 2012, A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals, Appl. Math. Comput., 219, 482
Brunner, 1989, The numerical solution of two-dimensional volterra integral equations by collocation and iterated collocation, IMA J. Numer. Anal., 9, 47, 10.1093/imanum/9.1.47
Guoqiang, 1993, Asymptotic error expansion variation of a collocation method for Volterra-Hammerstein equations, J. Appl. Numer. Math., 13, 357, 10.1016/0168-9274(93)90094-8
Higham, 2001, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43, 525, 10.1137/S0036144500378302
Kloeden, 1992
Kreyszig, 1978
Kumar, 1987, A new collocation-type method for Hammerstein integral equations, J. Math. Comput., 48, 123, 10.1090/S0025-5718-1987-0878692-4
Lehmer, 1998, A new approach to Bernoulli polynomials, Amer. Math. Monthly, 95, 905, 10.1080/00029890.1988.11972114
Maleknejad, 2012, Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm– Hammerstein integral equations, Commun. Nonlinear Sci. Numer. Simul., 17, 52, 10.1016/j.cnsns.2011.04.023
Maleknejad, 2007, Numerical solution of the Volterra type integral equation of the first kind with wavelet basis, Appl. Math. Comput., 194, 400
Maleknejad, 2011, Modification of block pulse functions and their application to solve numerically Volterra integral equation of the first kind, Commun. Nonlinear Sci. Numer. Simul., 16, 2469, 10.1016/j.cnsns.2010.09.032
Milstein, 1995
Mirzaee, 2014, A collocation technique for solving nonlinear Stochastic Itô-Volterra integral equation, Appl. Math. Comput., 247, 1011
Mirzaee, 2018, Euler polynomial solutions of nonlinear stochastic Itô-Volterra integral equations, J. Comput. Appl. Math., 330, 574, 10.1016/j.cam.2017.09.005
MuskHelishvili, 1953
Natalini, 2003, A generalization of the Bernoulli polynomials, J. Appl. Math., 3, 155, 10.1155/S1110757X03204101
Nemati, 2015, Numerical solution of Volterra-Fredholm integral equations using Legendre collocation method, J. Comput. Appl. Math., 278, 29, 10.1016/j.cam.2014.09.030
Par, 2012, Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions, Appl. Math. Comput., 218, 5292
Srivastava, 2001
Tian, 2001, Implicit Taylor methods for stiff stochastic differential equations, App. Numer. Math., 38, 167, 10.1016/S0168-9274(01)00034-4
Tohidi, 2013, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model., 37, 4283, 10.1016/j.apm.2012.09.032
Toutounian, 2013, A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis, Appl. Math. Comput., 223, 298